Static Program Analysis

Lecture 17: Abstract Interpretation VII
(Final Remarks on CEGAR)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

© Recap: Counterexample-Guided Abstraction Refinement

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 17.2

Reminder: CEGAR

yes

‘{ Start with (coarse) }—)‘Property satisfied in A?J

initial abstraction A

/ o

Remove counterexample
by refining A

[Find run violating cp]

spurious

Eﬂxnalyze counterexample}

Problems:
@ How to decide realness of real

counterexample?
@ How to extract new predicates -
from spurious counterexample?

RWIHAACHEN Static Program Analysis Winter Semester 2014 /15 17.3

Abstract Semantics for Predicate Abstraction |

Definition (Execution relation for predicate abstraction)

If c € Cmd and Q € Abs(ps, ..., pn), then {c, Q) is called an abstract
configuration. The execution relation for predicate abstraction is defined by the

following rules:
ki n
) i 5 @ =20 = G Qo [0 F Q)

@@= dq4 (o (@@=
(116, Q) = (c;0, Q) a2 Q) = (e Q)

(if1)

(seql)

(if b then ¢ else ¢, Q) = (c1, Q A b)

if2 ————
(if2) (if b then ¢ else &, Q) = (c, @ A —b)

(wh1) _
(while b do ¢, Q) = (c;while b do ¢, Q A b)

(wh2)

(while b do ¢, Q) = (], Q A —b)

Winter Semester 2014/15 17.4

RWNTH Static Program Analysis

Counterexamples

Typical properties of interest:
@ a certain program location is not reachable (dead code)
@ division by zero is excluded
@ the value of x never becomes negative
o after program termination, the value of y is even

Definition (Counterexample)
@ A counterexample is a sequence of abstract transitions of the form

(co, true) = (c1, Q1) = ... = (ck, Qx)
where
o k>1

e Cp,...,ck € Cmd (or cx =)
o Q1,...,Q € Abs(p1, ..., p,) with Qx # false

@ It is called real if there exist concrete states og,...,0x € such that

Vi € {1,...,/(} o): Q; and <C,',1,0',',1> — <C,',0','>

@ Otherwise it is called spurious.

RWNTH Static Program Analysis Winter Semester 2014/15

175

Elimination of Spurious Counterexamples

If (co, true) = (c1, Q1) = ... = (ck, Qk) is a spurious counterexample,
there exist Boolean expressions by, . . ., by with by = true, b, = false, and

Vie{l,...,k},0,0' €L :0F bi_1,{ci_1,0) = (c;,0') = o' Eb;

Proof (idea).
Inductive definition of b; as strongest postconditions:
Q@ by ;= true
@ for i =1,..., k: definition of b; depending on b;_; and on (axiom)
transition rule applied in (¢i_1,.) = (ci,.):
o (skip) b; :== bj_1 °

o (asgn) by := 3Ix'.(bi—1[x = X'] A x = a[x — X])
(x" = previous value of x)

(ifl) b == bi_1 A b
(if2) bj == bi_1 A —b
(Wh1) b; := bi_y A b
o (wh2) b; := b;_1 A—b
(yields px = false; by induction on k) O

<
RWNTH Static Program Analysis Winter Semester 2014/15 17.6

Abstraction Refinement

Abstraction refinement step:

@ Using b1, ..., kk_1 as computed before, let P := PU{p1,...,pn}
where p1, ..., pn are the atomic conjuncts occurring in by, ..., kxk_1

@ Refine Abs(P) to Abs(P’)

After refinement, the spurious counterexample

(co,true) = (c1, Q1) = ... = (ck, Q)

with Qy # false does not exist anymore.

omitted O
RWNTH Static Program Analysis Winter Semester 2014/15 17.7

© Where CEGAR Fails

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 17.8

Where CEGAR Fails

o Let ¢o:=[x := a]%

[y = b]';

while [-(x = 0)]? do
[x := x - 1]3;
y ==y - 1%

if [a = b A —(y = 0)]° then
[skip]®;

else
[skip];

@ Interesting property: label 6 unreachable

@ Initial abstraction: P = (= Abs(P) = {true, false})

@ Abstraction refinement: on the board

@ Observation: iteration yields predicates of the form x = a-k and
y = b-k forall k e N

o Actually required: loop invarianta = b — x =y,
but x = y not generated in CEGAR loop

RWNTH Static Program Analysis Winter Semester 2014/15 17.9

© Craig Interpolation

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 17.10

Craig Interpolation

@ Problem: predicates often unnecessarily complex and involving
“irrelevant” variables

o ldea: consider only variables that are relevant for previous and future
part of execution

William Craig (* 1918)

Definition 17.2 (Craig interpolant)

Let b1, by € BExp where by |= by. A Craig interpolant of by and by is a
formula b3 € BExp with by |= b3, b3 = bo, and Varp, C Varp, N Vary,.

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 17.11

Using Craig Interpolants |

@ Begin with spurious counterexample
(co, true) = (c1, Q1) = ... = (ck, Q) (according to Definition 16.3)
@ Construct strongest postconditions sy, . .., Sk with sy = true,
sk = false (according to Lemma 16.4)
© Analogously it is possible to construct weakest preconditions
wo, - - ., Wx with wg = true, wy = false starting from wy
@ w = false
@ fori=0,...,k— 1: definition of b; depending on b;;1 and on (axiom)
transition rule applied in (¢;,.) = (cit1,.):
o (skip) wi := w1 o (if2) wi :=wiy1 Vb
o (asgn) wi := wizi[x — 3] o (whl) wi :=wj;1 VvV —b
o (ifl) w; := (wit1 Ab)V =b = wiy1 V —b o (wh2) wi :=wiz1 Vb
© Possible to show: s; = w; for each i € {0, ..., k}
@ For each i € {0,..., k}, choose Craig interpolant b; of s; and w;

O Refine abstraction by atomic conjuncts occurring in by, ..., ki1
Remark: Craig interpolants always exist for first-order formulae (but are
not necessarily unique)

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 17.12

Using Craig Interpolants Il

Example 17.3 (cf. Example 16.5)

Let co:=[x := 2]%[z := z + 1]};[y := 2]%;
if [x = y]® then [skip]* else [skip]®

© Spurious counterexample:

(0, true) = (1,true) = (2,true) = (3,true) = (4, true)

@ Strongest postconditions: sy = true
s1=(x=2)
=(x+1=2z2)
ss=(x+1=zAy=2)
sy — false

© Weakest preconditions w;: on the board

@ Craig interpolants b;: on the board

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 17.13

@ CEGAR Tools

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 17.14

CPAchecker

CPA: “Configurable Program Analysis"

@ Java re-implementation of Berkeley Lazy Abstraction Software
Verification Tool (BLAST)

Software model checker for C programs

Verifies that software satisfies behavioural requirements of associated
interfaces
@ Uses CEGAR with Craig interpolation and lazy abstraction
e abstraction is constructed on-the-fly
e model locally refined on demand
Sucessfully applied to C programs with > 130,000 LOC
o D. Beyer, M.E. Keremoglu: CPAchecker: A Tool for Configurable
Software Verification. Proc. CAV, 2011, 184-190

o WWW: http://cpachecker.sosy-lab.org/

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 17.15

http://cpachecker.sosy-lab.org/

SLAM

@ was: Software, Languages, Analysis, and Modeling
o First implementation of CEGAR for C programs

@ Also verifies that software satisfies behavioural requirements of
associated interfaces

@ Supports pointers, memory allocation, and BDD-based model
checking
@ Sub-tools:
e c2bp: C program x Predicates — Boolean program
e BEPOP: symbolic model checker for (recursive) Boolean programs
e newton: abstraction refinement
@ Developed into commercial product (Static Driver Verifier, SDV)
e T. Ball, V. Levin, S.K. Rajamani: A Decade of Software Model
Checking with SLAM. Comm. ACM 54(7), 2011, 68-76
o WWW:
http://research.microsoft.com/en-us/projects/slam/

CHEN Static Program Analysis Winter Semester 2014/15 17.16

http://research.microsoft.com/en-us/projects/slam/

	Recap: Counterexample-Guided Abstraction Refinement
	Where CEGAR Fails
	Craig Interpolation
	CEGAR Tools

