Static Program Analysis

Lecture 16: Abstract Interpretation VI
(Counterexample-Guided Abstraction Refinement)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Oral Exam in Static Program Analysis

@ Options:
e Thu 12 March
e Tue 24 March
e Thu 26 March
o Wed 08 April
@ Registration via https://terminplaner2.dfn.de/foodle/
Exam-Static-Program-Analysis-54991 (accessible through
http://moves.rwth-aachen.de/teaching/ws-1415/spa/)

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.2

https://terminplaner2.dfn.de/foodle/Exam-Static-Program-Analysis-54991
https://terminplaner2.dfn.de/foodle/Exam-Static-Program-Analysis-54991
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

@ Recap: Predicate Abstraction

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.3

Predicate Abstraction |

Definition (Predicate abstraction)

Let Var be a set of variables.
@ A predicate is a Boolean expression p € BExp over Var.
e A state o € ¥ satisfies p € BExp (o = p) if val,(p) = true.

e pimplies g (p = q) if 0 = g whenever o = p
(or: p is stronger than g, g is weaker than p).

@ p and g are equivalent (p = q) if p =g and q = p.

o Let P ={pi1,...,pn} C BExp be a finite set of predicates, and let
=P :={=p1,...,7pn}. An element of P U =P is called a literal. The
predicate abstraction lattice is defined by:

Abs(p1,...,pn) = ({/\Q!QCPU—'P}):)

Abbreviations: true := A 0, false := A{p;, —pi,...}

RWNTH Static Program Analysis Winter Semester 2014/15 16.4

Predicate Abstraction |l

Abs(p1, ..., pn) is a complete lattice with
o | =false, T = true
@ UMN@=GAQ

e QU =QV Q where b:= N{ge PU—-P | b q}
(i.e., strongest formula in Abs(pi, ..., pn) that is implied by Q1 V Q)

Let P := {p1, p2, p3}-
© For Q1 := p1 A —po and @ := —py A p3, we obtain
QM@ =QANQ=pitAN-pAps
QU =QVQ=—-pA(p1Vp)=-p
@ For Q1 := p1 A pp and Q> := p1 A —pp, we obtain
QM Q= Q1 AN Qr = false
QU =QqV@Q=pA(p2V-p)=p

RWNTH Static Program Analysis Winter Semester 2014/15 16.5

Predicate Abstraction |1l

Definition (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

o : 2% — Abs(py,...,pn) and v :Abs(pi,...,pn) — 2%
with a(S) = |_|{QU |loeS} and (Q):={ceX|okEQ}

where Qo := A({pi |1 <i<noEp}tU{-pi|1<i<noppi}).

Example
o Let Var:= {x,y}
o Let P :={p1, p2, p3} where p; := (x<=y), p2 := (x=y), p3 := (x>y)
o If S={o1,00} C X withoy=[x—1y—2],00=[x—2,y— 2]
then a(S) = Qy, U Qp,
= (pr A =p2 A =p3) U (p1 A p2 A —p3)
= (pr A —p2 A =p3) V (p1 A p2 A —ps3)
=p1/Ap3
o If Q=p1 A—p2 € Abs(p1,...,pn), then y(Q) ={oc € X | o(x) < a(y)})
RWNTH Static Program Analysis

| \

Winter Semester 2014/15 16.6

Abstract Semantics for Predicate Abstraction |

Definition (Execution relation for predicate abstraction)

If c € Cmd and Q € Abs(ps, ..., pn), then {c, Q) is called an abstract
configuration. The execution relation for predicate abstraction is defined by the

following rules:
ki n
) i 5 @ =20 = G Qo [0 F Q)

@@= dq4 (o (@@=
(116, Q) = (c;0, Q) a2 Q) = (e Q)

(if1)

(seql)

(if b then ¢ else ¢, Q) = (c1, Q A b)

if2 ————
(if2) (if b then ¢ else &, Q) = (c, @ A —b)

(wh1) _
(while b do ¢, Q) = (c;while b do ¢, Q A b)

(wh2)

(while b do ¢, Q) = (], Q A —b)

Winter Semester 2014/15 16.7

RWNTH Static Program Analysis

© Additional Remarks

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.8

Additional Remarks

In Rules (if1, (if2), (whl), (wh2), the fact that b = p; for some
i€{l,...,n} implies Q A [-]b € Abs(p1,...,pn), but not
QA[F]b=QA[-]b

Example 16.1 (cf. Example 15.7)
o pri=(x>y)p=(x>7y)
o @ :=true, b:=p;

= QAb=pApp# QAb=p

For similar reasons, generally Q1 LI @ (= Q1 V @2) # Q1N @ J

Example 16.2

o pri=(x>y), pi=(x>y)p:=(x=y)
o ui=pApA-p3(Ex>y), Q:=p3(=x =7Y)
= QUQ=0Q1V Q=pr# Q1N Q= true

RWNTH HE Static Program Analysis Winter Semester 2014/15 16.9

Computation of Postconditions

Problem: b = A\{qg € PU—=P | b= q} (i.e., the strongest formula in
Abs(pi, ..., pn) that is implied by b) is generally not computable (due to
undecidability of implication in certain logics)

Solutions:
@ Over-approximation: fall back to non-strongest postconditions
e in practice, (automatic) theorem proving
o forevery i € {1,...,n}, try to prove b |= p; and b |= —p;
e approximate b by conjunction of all provable literals
@ Restriction of programs:

o |= decidable for certain logics
o example: Presburger arithmetic (first-order theory of N with +)
e thus b computable for WHILE programs without multiplication

@ Restriction to finite domains:

o for example, binary numbers of fixed size
o thus everything (domain, Galois connection, ...) exactly computable
o problem: exponential blowup = solution: Binary Decision Diagrams

HEN Static Program Analysis Winter Semester 2014/15 16.10

© Counterexample-Guided Abstraction Refinement

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 16.11

Reminder: CEGAR

yes

‘{ Start with (coarse) }—)‘Property satisfied in A?J

initial abstraction A

/ o

Remove counterexample
by refining A

[Find run violating cp]

spurious

Eﬂxnalyze counterexample}

Problems:
@ How to decide realness of real

counterexample?
@ How to extract new predicates -
from spurious counterexample?
RWTHAACHEN Static Program Analysis Winter Semester 2014/15 16.12

Counterexamples

Typical properties of interest:
@ a certain program location is not reachable (dead code)
@ division by zero is excluded
@ the value of x never becomes negative
o after program termination, the value of y is even

Definition 16.3 (Counterexample)
@ A counterexample is a sequence of abstract transitions of the form

(co, true) = (c1, Q1) = ... = (ck, Qx)
where
o k>1

e Cp,...,ck € Cmd (or cx =)
o Q1,...,Q € Abs(p1, ..., p,) with Qx # false

@ It is called real if there exist concrete states oy, ...,0x € such that

Vi e {1,...,/(} o): Q; and <C,',1,0',',1> — <C,',0','>

@ Otherwise it is called spurious.

RWNTH Static Program Analysis Winter Semester 2014/15

16.13

Elimination of Spurious Counterexamples |

Lemma 16.4
If (co, true) = (c1, Q1) = ... = (ck, Qk) is a spurious counterexample,
there exist Boolean expressions by, . . ., by with by = true, b, = false, and

Vie{l,...,k},0,0' €L :0F bi_1,{ci_1,0) = (c;,0') = o' Eb;

Proof (idea).
Inductive definition of b; as strongest postconditions:
Q@ by ;= true
@ for i =1,..., k: definition of b; depending on b;_; and on (axiom)
transition rule applied in (¢i_1,.) = (ci,.):
o (skip) b; :== bj_1 °

o (asgn) by := 3Ix'.(bi—1[x = X'] A x = a[x — X])
(x" = previous value of x)

(ifl) b == bi_1 A b
(if2) bj == bi_1 A —b
(Wh1) b; := bi_y A b
o (wh2) b; := b;_1 A—b
(yields px = false; by induction on k) O

<
RWNTH Static Program Analysis Winter Semester 2014/15 16.14

Elimination of Spurious Counterexamples ||

Example 16.5

o Let o =[x := z]%[z := z + 1]};[y := 2]*%;
if [x = y]® then [skip]* else [skip]®
@ Interesting property: after termination, x # y, i.e., label 4 unreachable
e Initial abstraction: P = (= Abs(P) = {true, false})
(Spurious) counterexample:
(0, true) = (1,true) = (2,true) = (3,true) = (4, true)
Forward construction of Boolean expressions:

(]

@ by := true
o (asgn) b; := IX'.(bi_1[x — x| A x = a[x — X'])

= by =X .(bo[x— X Ax=z[x— X]) = (x = 2)
o (asgn) b; := 3Ix'.(bi—1[x — X'] A x = a[x — X])

= by :=3Z.(z—= Z|ANz=2z+ 1z Z])

=3 (x=ZNz=2+1)=(x+1=2)

o (asgn) bj := 3x".(bi—1[x — X'] A x = a[x — X])

= b=y . (ly— YA Ay=zly—y])=Ex+1l=2zAy=2z2)
° (Ifl) bi:=bi_1 Nb

= by=biAx=y=(x+1l=zAy=zAx=y)=false

RWNTH | Static Program Analysis Winter Semester 2014/15 16.15

Abstraction Refinement

Abstraction refinement step:
@ Using by, ..., kx_1 as computed before, let P":= P U {p1,...,pn}
where p1, ..., pn are the atomic conjuncts occurring in by, ..., kxk_1

@ Refine Abs(P) to Abs(P’)

Lemma 16.6

After refinement, the spurious counterexample

(co,true> = <C1, Q1> = ...=> <Ck, Qk>
with Qy # false does not exist anymore.

omitted

Static Program Analysis Winter Semester 2014/15 16.16

A Simple Example

Example 16.7 (cf. Example 16.5)
o Let =[x := 2|%[z := z + 1]};[y := 2]?;
if [x = y]? then [skip]* else [skip]®
e P=0,P={x=2zx+1=2zy=2z}
P1 P2 3
o Refined abstract transitions:

=false

Static Program Analysis Winter Semester 2014/15 16.17

Another Example: Multiplication
Example 16.8

o Let ¢ :=[z := 0]°;
while [x > 0]' do

2 =2+ P
[x := x - 1]3;
if [z mod y = 0]* then
[skip]®;
else
[skip]®;

Initial assumption: y > 0
Interesting property: label 6 unreachable
Initial abstraction: P = (= Abs(P) = {true, false})

Abstraction refinement: on the board

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 16.18

	Recap: Predicate Abstraction
	Additional Remarks
	Counterexample-Guided Abstraction Refinement

