Static Program Analysis

Lecture 15: Abstract Interpretation V
(Numerical & Predicate Abstraction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Oral Exam in Static Program Analysis

@ Options:
e Thu 12 March
e Tue 24 March
e Thu 26 March
o Wed 08 April
@ Registration via https://terminplaner2.dfn.de/foodle/
Exam-Static-Program-Analysis-54991 (accessible through
http://moves.rwth-aachen.de/teaching/ws-1415/spa/)

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 15.2

https://terminplaner2.dfn.de/foodle/Exam-Static-Program-Analysis-54991
https://terminplaner2.dfn.de/foodle/Exam-Static-Program-Analysis-54991
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

© Overview of Numerical Abstraction Domains

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 15.3

Non-Relational Abstraction Domains

In non-relational domains, abstract values are independently referring to
single variables:
@ Signs (cf. Example 11.3): sgn(x) = s (x € Var, s € {+,—,0})
e Intervals (cf. Example 11.4): x € J
(x € Var, J € (ZU{—o0}) x (Z U {+o00})U{0})
o Parities (cf. Example 11.2): x € Z, (x € Var, p € {even,odd})
o Congruences (cf. Lemma 14.4): x mod m = k
(xe Var,m>1,ke{0,...,m—1})

Observations

@ Expressive power:
o Signs < Intervals (since + = [1, q], ...)
o Parities < Congruences (since x even <= x mod 2 =0, ...)
o Intervals and Congruences are incomparable
@ Congruences can prove disequalities but not inequalities
e e.g., xmod m=# y mod m = no zero division in 1/(x — y)
@ Mutual dependencies like x < y generally not representable
@ Non-relational domains efficient to represent and manipulate
RWTHAACHE Static Program Analysis Winter Semester 2014/15 15.4

Relational Abstraction Domains

In relational domains, interdependencies between variables are captured:
e Difference Bound Matrices (DBMs):
conjunctions of x —y < cand +x < ¢ (x,y € Var, c € Z)
@ Octagons: conjunctions of ax + by < ¢
(x,y € Var, a,be {—1,0,1}, c € Z)
@ Octahedra: conjunctions of ajx; + ...+ apxy < ¢
(x; € Var, aj € {-1,0,1}, c € Z)
@ Polyhedra: conjunctions of a;x; + ...+ anx, < ¢
(x; € Var, a, €Z, c € 7)

Observations

o Expressive power:
o DBMs < Octagons < Octahedra < Polyhedra
o Intervals < DBMs (since x € [c1, 6] < —x < —-a Ax < @)

e Can prove inequalities but not (general) disequalities
@ Representation and manipulation generally more involved
o Polyhedra require computation of convex hulls (exponential in |Var|)

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 15.5

Combining Non-Relational and Relational Domains

Linear Congruences combine features of Congruences and Polyhedra:
@ given by conjunctions of
(a1x1 + ...+ apxp) mod m=z
(xi € Var, a, € Z, m>1,z€Z)
@ typical application:
2x+1mod m# y mod m = no zero division in 1/(2x +1 — y)

@ Again usable for proving disequalities but not inequalities

RWTHAACHEN Static Program Analysis Winter Semester 2014/15

15.6

© Overview of Abstraction Refinement Using Predicates

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 15.7

Abstraction Refinement

@ Problem: desired program property cannot be shown using current
abstraction method
o Reasons:
@ program really violates property or
@ current abstraction is too coarse
e Solutions:
@ fix the problem
@ refine abstraction
e Abstraction refinement: most successful (automatic) method based
on
e predicate abstraction and
e analyzing counterexamples
o Difference to standard abstract interpretation:
abstraction parametrised by and specific to program

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 15.8

Counterexample-Guided Abstraction Refinement
CEGATR foop [Veriication successful

yes

Start with (coarse) >
‘{ initial abstraction A]—{Property ip satisfied in A'J
/ no

Remove counterexample
by refining A

[Find run violating cp]

spurious

[Analyze counterexample}

real

m-lAACHEN Static Program Analysis Winter Semester 2014 /15 15.9

Abstraction Refinement for Predicates

@ Extract predicates (i.e., logical formulae) from counterexample

@ Use Galois connection that classifies program states according to
validity of predicates (predicate abstraction)

© Compute new abstract semantics and search for new counterexamples

@ lterate until property satisfied or real counterexample found
(with increasing set of predicates)

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 15.10

© Predicate Abstraction

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 15.11

Predicate Abstraction |

Definition 15.1 (Predicate abstraction)

Let Var be a set of variables.
@ A predicate is a Boolean expression p € BExp over Var.
e A state o € ¥ satisfies p € BExp (0 = p) if val,(p) = true.

e pimplies g (p = q) if 0 = g whenever o = p
(or: p is stronger than g, g is weaker than p).

@ p and g are equivalent (p =q) if p =g and q = p.

o Let P={pi1,...,pn} C BExp be a finite set of predicates, and let
=P :={=p1,...,7pn}. An element of P U —P is called a literal. The
predicate abstraction lattice is defined by:

Abs(p1,...,pn) == ({/\Q!QCPU—'P}):)

Abbreviations: true := A 0, false := A{p;, —pi,...}

RWNTH Static Program Analysis Winter Semester 2014/15 15.12

Predicate Abstraction IlI
Lemma 15.2

Abs(p1, ..., pn) is a complete lattice with
o | =false, T = true
@ UMN@=GAQ

e QU =QV Q where b:= N{ge PU—-P | b q}
(i.e., strongest formula in Abs(pi, ..., pn) that is implied by Q1 V Q)

Example 15.3

Let P := {p1, p2, p3}-
© For Q1 := p1 A —po and @ := —py A p3, we obtain
QM@ =QANQ=pitAN-pAps
QU =QVQ=—-pA(p1Vp)=-p
@ For Q1 := p1 A pp and Q> := p1 A —pp, we obtain
QM Q= Q1 AN Qr = false
QU =QV@=pA(pV-p)=p

RWNTH Static Program Analysis Winter Semester 2014/15 15.13

Predicate Abstraction |1l

Definition 15.4 (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

o : 2% — Abs(py,...,pn) and v :Abs(pi,...,pn) — 2%
with a(S) = |_|{QU |loeS} and (Q):={ceX|okEQ}

where Qo := A({pi |1 <i<noEp}tU{-pi|1<i<noppi}).

Example 15.5
o Let Var:= {x,y}
o Let P :={p1, p2, p3} where p; := (x<=y), p2 := (x=y), p3 := (x>y)
o If S={o1,00} C X withoy=[x—1y—2],00=[x—2,y— 2]
then a(S) = Qy, U Qp,
= (pr A =p2 A =p3) U (p1 A p2 A —p3)
= (pr A —p2 A =p3) V (p1 A p2 A —ps3)
=p1/Ap3
o If Q=pi1 A—p2 € Abs(p1,...,pn), then y(Q) ={oc € X | 0(x) < a(y)})
RWNTH Static Program Analysis

| \

Winter Semester 2014/15 15.14

@ Abstract Semantics for Predicate Abstraction

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 15.15

Abstract Semantics for Predicate Abstraction |

Definition 15.6 (Execution relation for predicate abstraction)

If c € Cmd and Q € Abs(ps, ..., pn), then {c, Q) is called an abstract
configuration. The execution relation for predicate abstraction is defined by the

following rules:
ki n
) i 5 @ =20 = G Qo [0 F Q)

@@= dq4 (o (@@=
(116, Q) = (c;0, Q) a2 Q) = (e Q)

(if1)

(seql)

(if b then ¢ else ¢, Q) = (c1, Q A b)

if2 ————
(if2) (if b then ¢ else &, Q) = (c, @ A —b)

(wh1) _
(while b do ¢, Q) = (c;while b do ¢, Q A b)

(wh2)

(while b do ¢, Q) = (], Q A —b)

Winter Semester 2014/15 15.16

RWNTH Static Program Analysis

Abstract Semantics for Predicate Abstraction Il

Remarks:

o In Rule (asgn), | [{ Qs[x—svar, (a)] | o = @} denotes the strongest
postcondition of @ w.r.t. statement x := a. It covers all states that

are obtained from a state satisfying Q by applying the assignment
X = a:

Abstract: <X =4 Q> = (l/a U{Qo[m—)vala(a)] | o |: Q}>
ol Ta
Concrete: (x :=a,{c € X |0 k= Q}) — (|, {o[x— val,(a)] | o = Q})

@ An abstract configuration of the form (c, false) represents an
unreachable configuration (as there is no o € ¥ such that o |= false)
and can therefore be omitted

e If P =10 (and thus Abs(P) = {true, false}) and if no b € BExp_ is a
tautology or contradiction (i.e., resp. equivalent to true or false), then
the abstract transition system corresponds to the control flow graph
of ¢

nerAACHEN Static Program Analysis Winter Semester 2014/15 15.17

Abstract Semantics for Predicate Abstraction IlI

Example 15.7

if [x > y]! then
while [-(y = 0)]?do © Claim: label 7 not reachable

[x := x - 1;]3; (as x > y is a loop invariant)
[y :=y - 1;]% @ Proof: by predicate abstraction with
if [x > 63’]5 then p1:=(x > y)and po:=(x >= y)
el[:jlp] g o Abstract transition system: on the board
[skip]’; e Remark: p; := (x > y) alone not sufficient
else to prove loop invariant
[skip]®; (as not necessarily valid after label 3)

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 15.18

	Overview of Numerical Abstraction Domains
	Overview of Abstraction Refinement Using Predicates
	Predicate Abstraction
	Abstract Semantics for Predicate Abstraction

