Static Program Analysis

Lecture 15: Abstract Interpretation V (Numerical & Predicate Abstraction)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

RWTHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Oral Exam in Static Program Analysis

- Options:
 - Thu 12 March
 - Tue 24 March
 - Thu 26 March
 - Wed 08 April
- Registration via https://terminplaner2.dfn.de/foodle/ Exam-Static-Program-Analysis-54991 (accessible through http://moves.rwth-aachen.de/teaching/ws-1415/spa/)

Outline

1 Overview of Numerical Abstraction Domains

- Overview of Abstraction Refinement Using Predicates
- Predicate Abstraction
- 4 Abstract Semantics for Predicate Abstraction

Non-Relational Abstraction Domains

In non-relational domains, abstract values are independently referring to single variables:

- Signs (cf. Example 11.3): $sgn(x) = s \ (x \in Var, \ s \in \{+, -, 0\})$
- Intervals (cf. Example 11.4): $x \in J$ $(x \in Var, J \in (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\}) \cup \{\emptyset\})$
- Parities (cf. Example 11.2): $x \in \mathbb{Z}_p$ ($x \in Var$, $p \in \{even, odd\}$)
- Congruences (cf. Lemma 14.4): $x \mod m = k$ ($x \in Var, m > 1, k \in \{0, ..., m-1\}$)

Non-Relational Abstraction Domains

In non-relational domains, abstract values are independently referring to single variables:

- Signs (cf. Example 11.3): $sgn(x) = s \ (x \in Var, \ s \in \{+, -, 0\})$
- Intervals (cf. Example 11.4): $x \in J$ $(x \in Var, J \in (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\}) \cup \{\emptyset\})$
- Parities (cf. Example 11.2): $x \in \mathbb{Z}_p$ ($x \in Var$, $p \in \{even, odd\}$)
- Congruences (cf. Lemma 14.4): $x \mod m = k$ ($x \in Var, m > 1, k \in \{0, ..., m 1\}$)

Observations

- Expressive power:
 - Signs < Intervals (since $+ \cong [1, \infty], ...$)
 - Parities < Congruences (since x even $\iff x \mod 2 = 0, ...$)
 - Intervals and Congruences are incomparable
- Congruences can prove disequalities but not inequalities
 - e.g., $x \mod m \neq y \mod m \implies$ no zero division in 1/(x-y)
- Mutual dependencies like $x \le y$ generally not representable
- Non-relational domains efficient to represent and manipulate

Relational Abstraction Domains

In relational domains, interdependencies between variables are captured:

- Difference Bound Matrices (DBMs): conjunctions of $x y \le c$ and $\pm x \le c$ $(x, y \in Var, c \in \mathbb{Z})$
- Octagons: conjunctions of $ax + by \le c$ $(x, y \in Var, a, b \in \{-1, 0, 1\}, c \in \mathbb{Z})$
- Octahedra: conjunctions of $a_1x_1 + ... + a_nx_n \le c$ $(x_i \in Var, a_i \in \{-1, 0, 1\}, c \in \mathbb{Z})$
- Polyhedra: conjunctions of $a_1x_1 + ... + a_nx_n \le c$ $(x_i \in Var, a_i \in \mathbb{Z}, c \in \mathbb{Z})$

Relational Abstraction Domains

In relational domains, interdependencies between variables are captured:

- Difference Bound Matrices (DBMs): conjunctions of $x-y \le c$ and $\pm x \le c$ $(x,y \in Var, c \in \mathbb{Z})$
- Octagons: conjunctions of $ax + by \le c$ ($x, y \in Var$, $a, b \in \{-1, 0, 1\}$, $c \in \mathbb{Z}$)
- Octahedra: conjunctions of $a_1x_1 + ... + a_nx_n \le c$ $(x_i \in Var, a_i \in \{-1, 0, 1\}, c \in \mathbb{Z})$
- Polyhedra: conjunctions of $a_1x_1 + ... + a_nx_n \le c$ $(x_i \in Var, a_i \in \mathbb{Z}, c \in \mathbb{Z})$

Observations

- Expressive power:
 - ullet DBMs < Octagons < Octahedra < Polyhedra
 - Intervals < DBMs (since $x \in [c_1, c_2] \iff -x \le -c_1 \land x \le c_2$)
- Can prove inequalities but not (general) disequalities
- Representation and manipulation generally more involved
 - ullet Polyhedra require computation of convex hulls (exponential in |Var|)

Combining Non-Relational and Relational Domains

Linear Congruences combine features of Congruences and Polyhedra:

• given by conjunctions of

$$(a_1x_1 + \ldots + a_nx_n) \mod m = z$$

 $(x_i \in Var, a_i \in \mathbb{Z}, m > 1, z \in \mathbb{Z})$

• typical application:

$$2x + 1 \mod m \neq y \mod m \implies$$
 no zero division in $1/(2x + 1 - y)$

• Again usable for proving disequalities but not inequalities

Outline

- Overview of Numerical Abstraction Domains
- Overview of Abstraction Refinement Using Predicates
- Predicate Abstraction
- 4 Abstract Semantics for Predicate Abstraction

• **Problem:** desired program property cannot be shown using current abstraction method

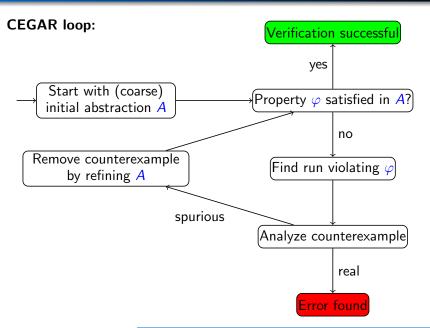
- Problem: desired program property cannot be shown using current abstraction method
- Reasons:
 - 1 program really violates property or
 - 2 current abstraction is too coarse

- Problem: desired program property cannot be shown using current abstraction method
- Reasons:
 - 1 program really violates property or
 - 2 current abstraction is too coarse
- Solutions:
 - fix the problem
 - 2 refine abstraction

- Problem: desired program property cannot be shown using current abstraction method
- Reasons:
 - program really violates property or
 - 2 current abstraction is too coarse
- Solutions:
 - fix the problem
 - 2 refine abstraction
- Abstraction refinement: most successful (automatic) method based on
 - predicate abstraction and
 - analyzing counterexamples

- Problem: desired program property cannot be shown using current abstraction method
- Reasons:
 - 1 program really violates property or
 - 2 current abstraction is too coarse
- Solutions:
 - fix the problem
 - 2 refine abstraction
- Abstraction refinement: most successful (automatic) method based on
 - predicate abstraction and
 - analyzing counterexamples
- Difference to standard abstract interpretation:
 abstraction parametrised by and specific to program

Counterexample-Guided Abstraction Refinement



1 Extract predicates (i.e., logical formulae) from counterexample

- Extract predicates (i.e., logical formulae) from counterexample
- Use Galois connection that classifies program states according to validity of predicates (predicate abstraction)

- Extract predicates (i.e., logical formulae) from counterexample
- Use Galois connection that classifies program states according to validity of predicates (predicate abstraction)
- 3 Compute new abstract semantics and search for new counterexamples

Extract predicates (i.e., logical formulae) from counterexample

Use Galois connection that classifies program states according to

- validity of predicates (predicate abstraction)
- Ompute new abstract semantics and search for new counterexamples
- Iterate until property satisfied or real counterexample found (with increasing set of predicates)

Outline

1 Overview of Numerical Abstraction Domains

- Overview of Abstraction Refinement Using Predicates
- Predicate Abstraction
- 4 Abstract Semantics for Predicate Abstraction

Definition 15.1 (Predicate abstraction)

Let Var be a set of variables.

• A predicate is a Boolean expression $p \in BExp$ over Var.

Definition 15.1 (Predicate abstraction)

- A predicate is a Boolean expression $p \in BExp$ over Var.
- A state $\sigma \in \Sigma$ satisfies $p \in BExp$ $(\sigma \models p)$ if $val_{\sigma}(p) = true$.

Definition 15.1 (Predicate abstraction)

- A predicate is a Boolean expression $p \in BExp$ over Var.
- A state $\sigma \in \Sigma$ satisfies $p \in BExp$ $(\sigma \models p)$ if $val_{\sigma}(p) = true$.
- p implies q ($p \models q$) if $\sigma \models q$ whenever $\sigma \models p$ (or: p is stronger than q, q is weaker than p).

Definition 15.1 (Predicate abstraction)

- A predicate is a Boolean expression $p \in BExp$ over Var.
- A state $\sigma \in \Sigma$ satisfies $p \in BExp$ $(\sigma \models p)$ if $val_{\sigma}(p) = true$.
- p implies q ($p \models q$) if $\sigma \models q$ whenever $\sigma \models p$ (or: p is stronger than q, q is weaker than p).
- p and q are equivalent $(p \equiv q)$ if $p \models q$ and $q \models p$.

Definition 15.1 (Predicate abstraction)

- A predicate is a Boolean expression $p \in BExp$ over Var.
- A state $\sigma \in \Sigma$ satisfies $p \in BExp$ ($\sigma \models p$) if $val_{\sigma}(p) = true$.
- p implies q ($p \models q$) if $\sigma \models q$ whenever $\sigma \models p$ (or: p is stronger than q, q is weaker than p).
- p and q are equivalent $(p \equiv q)$ if $p \models q$ and $q \models p$.
- Let $P = \{p_1, \dots, p_n\} \subseteq BExp$ be a finite set of predicates, and let $\neg P := \{\neg p_1, \dots, \neg p_n\}$. An element of $P \cup \neg P$ is called a literal. The predicate abstraction lattice is defined by:

$$Abs(p_1,\ldots,p_n) := \left(\left\{ \bigwedge Q \mid Q \subseteq P \cup \neg P \right\}, \models \right).$$

Definition 15.1 (Predicate abstraction)

Let Var be a set of variables.

- A predicate is a Boolean expression $p \in BExp$ over Var.
- A state $\sigma \in \Sigma$ satisfies $p \in BExp$ ($\sigma \models p$) if $val_{\sigma}(p) = true$.
- p implies q ($p \models q$) if $\sigma \models q$ whenever $\sigma \models p$ (or: p is stronger than q, q is weaker than p).
- p and q are equivalent $(p \equiv q)$ if $p \models q$ and $q \models p$.
- Let $P = \{p_1, \dots, p_n\} \subseteq BExp$ be a finite set of predicates, and let $\neg P := \{\neg p_1, \dots, \neg p_n\}$. An element of $P \cup \neg P$ is called a literal. The predicate abstraction lattice is defined by:

$$Abs(p_1,\ldots,p_n) := \left(\left\{ \bigwedge Q \mid Q \subseteq P \cup \neg P \right\}, \models \right).$$

Abbreviations: true := $\bigwedge \emptyset$, false := $\bigwedge \{p_i, \neg p_i, \ldots\}$

Lemma 15.2

 $Abs(p_1, ..., p_n)$ is a complete lattice with

- $\bot = false, \top = true$
- $\bullet \ \ Q_1 \sqcap Q_2 = Q_1 \land Q_2$
- $Q_1 \sqcup Q_2 = \overline{Q_1 \vee Q_2}$ where $\overline{b} := \bigwedge \{q \in P \cup \neg P \mid b \models q\}$ (i.e., strongest formula in $Abs(p_1, \ldots, p_n)$ that is implied by $Q_1 \vee Q_2$)

Lemma 15.2

 $Abs(p_1, ..., p_n)$ is a complete lattice with

- $\bot = \mathsf{false}$, $\top = \mathsf{true}$
- $\bullet \ \ Q_1 \sqcap Q_2 = Q_1 \land Q_2$
- $Q_1 \sqcup Q_2 = \overline{Q_1 \vee Q_2}$ where $\overline{b} := \bigwedge \{q \in P \cup \neg P \mid b \models q\}$ (i.e., strongest formula in $Abs(p_1, \ldots, p_n)$ that is implied by $Q_1 \vee Q_2$)

Example 15.3

Let $P := \{p_1, p_2, p_3\}.$

• For
$$Q_1:=p_1 \land \neg p_2$$
 and $Q_2:=\neg p_2 \land p_3$, we obtain $Q_1 \sqcap Q_2=Q_1 \land Q_2\equiv p_1 \land \neg p_2 \land p_3$

$$Q_1 \sqcup Q_2 = \frac{Q_1 \land Q_2}{Q_1 \lor Q_2} \equiv \frac{p_1 \land p_2 \land p_3}{p_2 \land (p_1 \lor p_3)} \equiv \neg p_2$$

Lemma 15.2

 $Abs(p_1, ..., p_n)$ is a complete lattice with

- $\bot = \mathsf{false}$, $\top = \mathsf{true}$
- $\bullet \ \ Q_1 \sqcap Q_2 = Q_1 \wedge Q_2$
- $Q_1 \sqcup Q_2 = \overline{Q_1 \vee Q_2}$ where $\overline{b} := \bigwedge \{q \in P \cup \neg P \mid b \models q\}$ (i.e., strongest formula in $Abs(p_1, \ldots, p_n)$ that is implied by $Q_1 \vee Q_2$)

Example 15.3

Let $P := \{p_1, p_2, p_3\}.$

• For $Q_1 := p_1 \land \neg p_2$ and $Q_2 := \neg p_2 \land p_3$, we obtain

$$Q_1 \sqcap Q_2 = Q_1 \land Q_2 \equiv p_1 \land \neg p_2 \land p_3$$

$$Q_1 \sqcup Q_2 = Q_1 \lor Q_2 \equiv \neg p_2 \land (p_1 \lor p_3) \equiv \neg p_2$$

② For $Q_1 := p_1 \wedge p_2$ and $Q_2 := p_1 \wedge \neg p_2$, we obtain

$$Q_1 \sqcap Q_2 = Q_1 \land Q_2 \equiv$$
false
 $Q_1 \sqcup Q_2 = \overline{Q_1 \lor Q_2} \equiv$ $\overline{p_1 \land (p_2 \lor \neg p_2)} \equiv p_1$

Definition 15.4 (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

$$\alpha: 2^{\Sigma} \to Abs(p_1, \dots, p_n)$$
 and $\gamma: Abs(p_1, \dots, p_n) \to 2^{\Sigma}$

with

$$\alpha(S) := \bigsqcup \{Q_{\sigma} \mid \sigma \in S\} \text{ and } \gamma(Q) := \{\sigma \in \Sigma \mid \sigma \models Q\}$$

where $Q_{\sigma} := \bigwedge (\{p_i \mid 1 \leq i \leq n, \sigma \models p_i\} \cup \{\neg p_i \mid 1 \leq i \leq n, \sigma \not\models p_i\}).$

Definition 15.4 (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

$$\alpha: 2^{\Sigma} \to Abs(p_1, \dots, p_n)$$
 and $\gamma: Abs(p_1, \dots, p_n) \to 2^{\Sigma}$

with

$$\alpha(S) := \bigsqcup \{Q_{\sigma} \mid \sigma \in S\} \quad \text{and} \quad \gamma(Q) := \{\sigma \in \Sigma \mid \sigma \models Q\}$$

where $Q_{\sigma} := \bigwedge (\{p_i \mid 1 \leq i \leq n, \sigma \models p_i\} \cup \{\neg p_i \mid 1 \leq i \leq n, \sigma \not\models p_i\}).$

- Let $Var := \{x, y\}$
- Let $P := \{p_1, p_2, p_3\}$ where $p_1 := (x \le y), p_2 := (x = y), p_3 := (x > y)$

Definition 15.4 (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

$$\alpha: 2^{\Sigma} \to Abs(p_1, \dots, p_n)$$
 and $\gamma: Abs(p_1, \dots, p_n) \to 2^{\Sigma}$

 $\quad \text{with} \quad$

$$\alpha(S) := \bigsqcup \{Q_{\sigma} \mid \sigma \in S\} \text{ and } \gamma(Q) := \{\sigma \in \Sigma \mid \sigma \models Q\}$$

where $Q_{\sigma} := \bigwedge (\{p_i \mid 1 \leq i \leq n, \sigma \models p_i\} \cup \{\neg p_i \mid 1 \leq i \leq n, \sigma \not\models p_i\}).$

- Let $Var := \{x, y\}$
- Let $P := \{p_1, p_2, p_3\}$ where $p_1 := (x \le y), p_2 := (x = y), p_3 := (x > y)$
- If $S = \{\sigma_1, \sigma_2\} \subseteq \Sigma$ with $\sigma_1 = [\mathtt{x} \mapsto 1, \mathtt{y} \mapsto 2]$, $\sigma_2 = [\mathtt{x} \mapsto 2, \mathtt{y} \mapsto 2]$, then $\alpha(S) = Q_{\sigma_1} \sqcup Q_{\sigma_2}$ $= (p_1 \land \neg p_2 \land \neg p_3) \sqcup (p_1 \land p_2 \land \neg p_3)$ $= (p_1 \land \neg p_2 \land \neg p_3) \lor (p_1 \land p_2 \land \neg p_3)$ $\equiv p_1 \land \neg p_3$

Definition 15.4 (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

$$\alpha: 2^{\Sigma} \to Abs(p_1, \dots, p_n)$$
 and $\gamma: Abs(p_1, \dots, p_n) \to 2^{\Sigma}$

with

$$\alpha(S) := | \{ Q_{\sigma} \mid \sigma \in S \} \text{ and } \gamma(Q) := \{ \sigma \in \Sigma \mid \sigma \models Q \}$$

where
$$Q_{\sigma} := \bigwedge (\{p_i \mid 1 \leq i \leq n, \sigma \models p_i\} \cup \{\neg p_i \mid 1 \leq i \leq n, \sigma \not\models p_i\}).$$

- Let $Var := \{x, y\}$
- Let $P := \{p_1, p_2, p_3\}$ where $p_1 := (x \le y), p_2 := (x = y), p_3 := (x > y)$
- If $S = \{\sigma_1, \sigma_2\} \subseteq \Sigma$ with $\sigma_1 = [\mathfrak{x} \mapsto 1, \mathfrak{y} \mapsto 2]$, $\sigma_2 = [\mathfrak{x} \mapsto 2, \mathfrak{y} \mapsto 2]$, then $\alpha(S) = Q_{\sigma_1} \sqcup Q_{\sigma_2}$ $= (p_1 \wedge \neg p_2 \wedge \neg p_3) \sqcup (p_1 \wedge p_2 \wedge \neg p_3)$ $= (p_1 \wedge \neg p_2 \wedge \neg p_3) \vee (p_1 \wedge p_2 \wedge \neg p_3)$
 - $\equiv p_1 \wedge \neg p_3$
- If $Q = p_1 \land \neg p_2 \in Abs(p_1, \dots, p_n)$, then $\gamma(Q) = \{ \sigma \in \Sigma \mid \sigma(x) < \sigma(y) \}$

Outline

Overview of Numerical Abstraction Domains

- Overview of Abstraction Refinement Using Predicates
- Predicate Abstraction
- 4 Abstract Semantics for Predicate Abstraction

Abstract Semantics for Predicate Abstraction I

Definition 15.6 (Execution relation for predicate abstraction)

If $c \in Cmd$ and $Q \in Abs(p_1, ..., p_n)$, then $\langle c, Q \rangle$ is called an abstract configuration. The execution relation for predicate abstraction is defined by the following rules:

$$(\operatorname{skip}) \frac{1}{\langle \operatorname{skip}, Q \rangle \Rightarrow \langle \downarrow, Q \rangle} \text{ (asgn)} \frac{1}{\langle x := a, Q \rangle \Rightarrow \langle \downarrow, \bigsqcup \{Q_{\sigma[x \mapsto val_{\sigma}(a)]} \mid \sigma \models Q\} \rangle}{\langle (\operatorname{seq1}) \frac{\langle c_1, Q \rangle \Rightarrow \langle c'_1, Q' \rangle}{\langle c_1; c_2, Q \rangle \Rightarrow \langle c'_1; c_2, Q' \rangle}} \text{ (seq2)} \frac{\langle c_1, Q \rangle \Rightarrow \langle \downarrow, Q' \rangle}{\langle c_1; c_2, Q \rangle \Rightarrow \langle c_2, Q' \rangle}}{\langle (\operatorname{if1}) \frac{\langle \operatorname{if} b \operatorname{then} c_1 \operatorname{else} c_2, Q \rangle \Rightarrow \langle c_1, \overline{Q} \wedge \overline{b} \rangle}{\langle \operatorname{if} b \operatorname{then} c_1 \operatorname{else} c_2, Q \rangle \Rightarrow \langle c_2, \overline{Q} \wedge \overline{b} \rangle}}}{\langle \operatorname{if1} b \operatorname{then} c_1 \operatorname{else} c_2, Q \rangle \Rightarrow \langle c_2, \overline{Q} \wedge \overline{b} \rangle}}}{\langle \operatorname{wh1}) \frac{\langle \operatorname{wh1} b \operatorname{do} c, Q \rangle \Rightarrow \langle c; \operatorname{while} b \operatorname{do} c, \overline{Q} \wedge \overline{b} \rangle}{\langle \operatorname{while} b \operatorname{do} c, Q \rangle \Rightarrow \langle c; \operatorname{while} b \operatorname{do} c, \overline{Q} \wedge \overline{b} \rangle}}$$

Abstract Semantics for Predicate Abstraction II

Remarks:

• In Rule (asgn), $\bigsqcup\{Q_{\sigma[x\mapsto val_{\sigma}(a)]}\mid \sigma\models Q\}$ denotes the strongest postcondition of Q w.r.t. statement x:=a. It covers all states that are obtained from a state satisfying Q by applying the assignment

$$\begin{array}{ll} x := a: \\ \text{Abstract:} & \langle x := a, Q \rangle & \Rightarrow \langle \downarrow, \bigsqcup \{Q_{\sigma[x \mapsto val_{\sigma}(a)]} \mid \sigma \models Q\} \rangle \\ & & \downarrow \gamma & \uparrow \alpha \\ \text{Concrete:} & \langle x := a, \{\sigma \in \Sigma \mid \sigma \models Q\} \rangle \rightarrow \langle \downarrow, \{\sigma[x \mapsto val_{\sigma}(a)] \mid \sigma \models Q\} \rangle \end{array}$$

Abstract Semantics for Predicate Abstraction II

Remarks:

• In Rule (asgn), $\bigsqcup\{Q_{\sigma[x\mapsto val_{\sigma}(a)]}\mid \sigma\models Q\}$ denotes the strongest postcondition of Q w.r.t. statement x:=a. It covers all states that are obtained from a state satisfying Q by applying the assignment x:=a:

Abstract:
$$\langle x := a, Q \rangle \Rightarrow \langle \downarrow, \bigsqcup \{Q_{\sigma[x \mapsto val_{\sigma}(a)]} \mid \sigma \models Q\} \rangle$$

 $\downarrow \gamma \qquad \uparrow \alpha$
Concrete: $\langle x := a, \{\sigma \in \Sigma \mid \sigma \models Q\} \rangle \rightarrow \langle \downarrow, \{\sigma[x \mapsto val_{\sigma}(a)] \mid \sigma \models Q\} \rangle$

• An abstract configuration of the form $\langle c, \mathsf{false} \rangle$ represents an unreachable configuration (as there is no $\sigma \in \Sigma$ such that $\sigma \models \mathsf{false}$) and can therefore be omitted

Abstract Semantics for Predicate Abstraction II

Remarks:

• In Rule (asgn), $\bigsqcup\{Q_{\sigma[x\mapsto val_{\sigma}(a)]}\mid \sigma\models Q\}$ denotes the strongest postcondition of Q w.r.t. statement x:=a. It covers all states that are obtained from a state satisfying Q by applying the assignment x:=a:

$$\begin{array}{ccc} \mathsf{Abstract:} & \langle x := \mathsf{a}, Q \rangle & \Rightarrow \langle \downarrow, \bigsqcup \{Q_{\sigma[\mathsf{x} \mapsto \mathsf{val}_\sigma(\mathsf{a})]} \mid \sigma \models Q \} \rangle \\ & \downarrow \gamma & \uparrow \alpha \\ \mathsf{Concrete:} \; \langle x := \mathsf{a}, \{\sigma \in \Sigma \mid \sigma \models Q \} \rangle \rightarrow \langle \downarrow, \{\sigma[\mathsf{x} \mapsto \mathsf{val}_\sigma(\mathsf{a})] \mid \sigma \models Q \} \rangle \end{array}$$

- An abstract configuration of the form $\langle c, \mathsf{false} \rangle$ represents an unreachable configuration (as there is no $\sigma \in \Sigma$ such that $\sigma \models \mathsf{false}$) and can therefore be omitted
- If $P = \emptyset$ (and thus $Abs(P) = \{\text{true}, \text{false}\}\)$ and if no $b \in BExp_c$ is a tautology or contradiction (i.e., resp. equivalent to true or false), then the abstract transition system corresponds to the control flow graph of c

Abstract Semantics for Predicate Abstraction III

```
if [x > y]^1 then

while [\neg (y = 0)]^2 do

[x := x - 1;]^3;

[y := y - 1;]^4;

if [x > y]^5 then

[skip]^6;

else

[skip]^7;

else

[skip]^8;
```

Abstract Semantics for Predicate Abstraction III

```
if [x > y]^1 then

while [\neg (y = 0)]^2 do

[x := x - 1;]^3;

[y := y - 1;]^4;

if [x > y]^5 then

[skip]^6;

else

[skip]^7;

else

[skip]^8;
```

- Claim: label 7 not reachable
 (as x > y is a loop invariant)
- **Proof:** by predicate abstraction with $p_1 := (x > y)$ and $p_2 := (x >= y)$
- Abstract transition system: on the board

Abstract Semantics for Predicate Abstraction III

```
if [x > y]^1 then

while [\neg (y = 0)]^2 do

[x := x - 1;]^3;

[y := y - 1;]^4;

if [x > y]^5 then

[skip]^6;

else

[skip]^7;

else

[skip]^8;
```

- Claim: label 7 not reachable
 (as x > y is a loop invariant)
- **Proof:** by predicate abstraction with $p_1 := (x > y)$ and $p_2 := (x >= y)$
- Abstract transition system: on the board
- Remark: p₁ := (x > y) alone not sufficient to prove loop invariant
 (as not necessarily valid after label 3)