Static Program Analysis

Lecture 15: Abstract Interpretation V (Numerical \& Predicate Abstraction)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Oral Exam in Static Program Analysis

- Options:
- Thu 12 March
- Tue 24 March
- Thu 26 March
- Wed 08 April
- Registration via https://terminplaner2.dfn.de/foodle/ Exam-Static-Program-Analysis-54991 (accessible through http://moves.rwth-aachen.de/teaching/ws-1415/spa/)

Outline

(1) Overview of Numerical Abstraction Domains
(2) Overview of Abstraction Refinement Using Predicates

3 Predicate Abstraction

4 Abstract Semantics for Predicate Abstraction

Non-Relational Abstraction Domains

In non-relational domains, abstract values are independently referring to single variables:

- Signs (cf. Example 11.3): $\operatorname{sgn}(x)=s(x \in \operatorname{Var}, s \in\{+,-, 0\})$
- Intervals (cf. Example 11.4): $x \in J$

$$
(x \in \operatorname{Var}, J \in(\mathbb{Z} \cup\{-\infty\}) \times(\mathbb{Z} \cup\{+\infty\}) \cup\{\emptyset\})
$$

- Parities (cf. Example 11.2): $x \in \mathbb{Z}_{p}(x \in \operatorname{Var}, p \in\{$ even, odd $\})$
- Congruences (cf. Lemma 14.4): $x \bmod m=k$ $(x \in \operatorname{Var}, m>1, k \in\{0, \ldots, m-1\})$

Non-Relational Abstraction Domains

In non-relational domains, abstract values are independently referring to single variables:

- Signs (cf. Example 11.3): $\operatorname{sgn}(x)=s(x \in \operatorname{Var}, s \in\{+,-, 0\})$
- Intervals (cf. Example 11.4): $x \in J$
$(x \in \operatorname{Var}, J \in(\mathbb{Z} \cup\{-\infty\}) \times(\mathbb{Z} \cup\{+\infty\}) \cup\{\emptyset\})$
- Parities (cf. Example 11.2): $x \in \mathbb{Z}_{p}(x \in \operatorname{Var}, p \in\{$ even, odd $\})$
- Congruences (cf. Lemma 14.4): $x \bmod m=k$
$(x \in \operatorname{Var}, m>1, k \in\{0, \ldots, m-1\})$

Observations

- Expressive power:
- Signs < Intervals (since $+\cong[1, \infty], \ldots$)
- Parities $<$ Congruences (since x even $\Longleftrightarrow x \bmod 2=0, \ldots$)
- Intervals and Congruences are incomparable
- Congruences can prove disequalities but not inequalities
- e.g., $x \bmod m \neq y \bmod m \Longrightarrow$ no zero division in $1 /(x-y)$
- Mutual dependencies like $x \leq y$ generally not representable
- Non-relational domains efficient to represent and manipulate

Relational Abstraction Domains

In relational domains, interdependencies between variables are captured:

- Difference Bound Matrices (DBMs): conjunctions of $x-y \leq c$ and $\pm x \leq c(x, y \in \operatorname{Var}, c \in \mathbb{Z})$
- Octagons: conjunctions of $a x+b y \leq c$ $(x, y \in \operatorname{Var}, a, b \in\{-1,0,1\}, c \in \mathbb{Z})$
- Octahedra: conjunctions of $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq c$ $\left(x_{i} \in \operatorname{Var}, a_{i} \in\{-1,0,1\}, c \in \mathbb{Z}\right)$
- Polyhedra: conjunctions of $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq c$ $\left(x_{i} \in \operatorname{Var}, a_{i} \in \mathbb{Z}, c \in \mathbb{Z}\right)$

Relational Abstraction Domains

In relational domains, interdependencies between variables are captured:

- Difference Bound Matrices (DBMs): conjunctions of $x-y \leq c$ and $\pm x \leq c(x, y \in \operatorname{Var}, c \in \mathbb{Z})$
- Octagons: conjunctions of $a x+$ by $\leq c$ $(x, y \in \operatorname{Var}, a, b \in\{-1,0,1\}, c \in \mathbb{Z})$
- Octahedra: conjunctions of $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq c$ $\left(x_{i} \in \operatorname{Var}, a_{i} \in\{-1,0,1\}, c \in \mathbb{Z}\right)$
- Polyhedra: conjunctions of $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq c$ $\left(x_{i} \in \operatorname{Var}, a_{i} \in \mathbb{Z}, c \in \mathbb{Z}\right)$

Observations

- Expressive power:
- DBMs $<$ Octagons $<$ Octahedra $<$ Polyhedra
- Intervals $<$ DBMs (since $x \in\left[c_{1}, c_{2}\right] \Longleftrightarrow-x \leq-c_{1} \wedge x \leq c_{2}$)
- Can prove inequalities but not (general) disequalities
- Representation and manipulation generally more involved
- Polyhedra require computation of convex hulls (exponential in $|\operatorname{Var}|$)

Combining Non-Relational and Relational Domains

Linear Congruences combine features of Congruences and Polyhedra:

- given by conjunctions of

$$
\left(a_{1} x_{1}+\ldots+a_{n} x_{n}\right) \bmod m=z
$$

$$
\left(x_{i} \in \operatorname{Var}, a_{i} \in \mathbb{Z}, m>1, z \in \mathbb{Z}\right)
$$

- typical application:
$2 x+1 \bmod m \neq y \bmod m \Longrightarrow$ no zero division in $1 /(2 x+1-y)$
- Again usable for proving disequalities but not inequalities

Outline

(1) Overview of Numerical Abstraction Domains

(2) Overview of Abstraction Refinement Using Predicates

3 Predicate Abstraction

4 Abstract Semantics for Predicate Abstraction

Abstraction Refinement

- Problem: desired program property cannot be shown using current abstraction method

Abstraction Refinement

- Problem: desired program property cannot be shown using current abstraction method
- Reasons:
(1) program really violates property or
(2) current abstraction is too coarse

Abstraction Refinement

- Problem: desired program property cannot be shown using current abstraction method
- Reasons:
(1) program really violates property or
(2) current abstraction is too coarse
- Solutions:
(1) fix the problem
(2) refine abstraction

Abstraction Refinement

- Problem: desired program property cannot be shown using current abstraction method
- Reasons:
(1) program really violates property or
(2) current abstraction is too coarse
- Solutions:
(1) fix the problem
(2) refine abstraction
- Abstraction refinement: most successful (automatic) method based on
- predicate abstraction and
- analyzing counterexamples

Abstraction Refinement

- Problem: desired program property cannot be shown using current abstraction method
- Reasons:
(1) program really violates property or
(2) current abstraction is too coarse
- Solutions:
(1) fix the problem
(2) refine abstraction
- Abstraction refinement: most successful (automatic) method based on
- predicate abstraction and
- analyzing counterexamples
- Difference to standard abstract interpretation: abstraction parametrised by and specific to program

Counterexample-Guided Abstraction Refinement

CEGAR loop:

Abstraction Refinement for Predicates

(1) Extract predicates (i.e., logical formulae) from counterexample

Abstraction Refinement for Predicates

(1) Extract predicates (i.e., logical formulae) from counterexample
(2) Use Galois connection that classifies program states according to validity of predicates (predicate abstraction)

Abstraction Refinement for Predicates

(1) Extract predicates (i.e., logical formulae) from counterexample
(2) Use Galois connection that classifies program states according to validity of predicates (predicate abstraction)
(3) Compute new abstract semantics and search for new counterexamples

Abstraction Refinement for Predicates

(1) Extract predicates (i.e., logical formulae) from counterexample
(2) Use Galois connection that classifies program states according to validity of predicates (predicate abstraction)
(3) Compute new abstract semantics and search for new counterexamples
(9) Iterate until property satisfied or real counterexample found (with increasing set of predicates)

Outline

(1) Overview of Numerical Abstraction Domains
(2) Overview of Abstraction Refinement Using Predicates
(3) Predicate Abstraction

4 Abstract Semantics for Predicate Abstraction

Predicate Abstraction I

Definition 15.1 (Predicate abstraction)

Let Var be a set of variables.

- A predicate is a Boolean expression $p \in B E x p$ over Var.

Predicate Abstraction I

Definition 15.1 (Predicate abstraction)

Let Var be a set of variables.

- A predicate is a Boolean expression $p \in B E x p$ over Var.
- A state $\sigma \in \Sigma$ satisfies $p \in B \operatorname{Exp}(\sigma \models p)$ if $\operatorname{val}_{\sigma}(p)=$ true.

Predicate Abstraction I

Definition 15.1 (Predicate abstraction)

Let Var be a set of variables.

- A predicate is a Boolean expression $p \in B E x p$ over Var.
- A state $\sigma \in \Sigma$ satisfies $p \in \operatorname{BExp}(\sigma \models p)$ if $\operatorname{val}_{\sigma}(p)=$ true.
- p implies $q(p \models q)$ if $\sigma \models q$ whenever $\sigma \models p$
(or: p is stronger than q, q is weaker than p).

Predicate Abstraction I

Definition 15.1 (Predicate abstraction)

Let Var be a set of variables.

- A predicate is a Boolean expression $p \in B E x p$ over Var.
- A state $\sigma \in \Sigma$ satisfies $p \in \operatorname{BExp}(\sigma \models p)$ if $\operatorname{val}_{\sigma}(p)=$ true.
- p implies $q(p \models q)$ if $\sigma \models q$ whenever $\sigma \models p$
(or: p is stronger than q, q is weaker than p).
- p and q are equivalent $(p \equiv q)$ if $p \models q$ and $q \models p$.

Predicate Abstraction I

Definition 15.1 (Predicate abstraction)

Let Var be a set of variables.

- A predicate is a Boolean expression $p \in B E x p$ over Var.
- A state $\sigma \in \Sigma$ satisfies $p \in \operatorname{BExp}(\sigma \models p)$ if $\operatorname{val}_{\sigma}(p)=$ true.
- p implies $q(p \models q)$ if $\sigma \models q$ whenever $\sigma \models p$
(or: p is stronger than q, q is weaker than p).
- p and q are equivalent $(p \equiv q)$ if $p \models q$ and $q \models p$.
- Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq B E x p$ be a finite set of predicates, and let $\neg P:=\left\{\neg p_{1}, \ldots, \neg p_{n}\right\}$. An element of $P \cup \neg P$ is called a literal. The predicate abstraction lattice is defined by:

$$
\operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right):=(\{\bigwedge Q \mid Q \subseteq P \cup \neg P\}, \models)
$$

Predicate Abstraction I

Definition 15.1 (Predicate abstraction)

Let Var be a set of variables.

- A predicate is a Boolean expression $p \in B E x p$ over Var.
- A state $\sigma \in \Sigma$ satisfies $p \in \operatorname{BExp}(\sigma \models p)$ if $\operatorname{val}_{\sigma}(p)=$ true.
- p implies $q(p \models q)$ if $\sigma \models q$ whenever $\sigma \models p$
(or: p is stronger than q, q is weaker than p).
- p and q are equivalent $(p \equiv q)$ if $p \models q$ and $q \models p$.
- Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq B E x p$ be a finite set of predicates, and let $\neg P:=\left\{\neg p_{1}, \ldots, \neg p_{n}\right\}$. An element of $P \cup \neg P$ is called a literal. The predicate abstraction lattice is defined by:

$$
\operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right):=(\{\bigwedge Q \mid Q \subseteq P \cup \neg P\}, \models)
$$

Abbreviations: true $:=\bigwedge \emptyset$, false $:=\bigwedge\left\{p_{i}, \neg p_{i}, \ldots\right\}$

Lemma 15.2

$\operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right)$ is a complete lattice with

- $\perp=$ false, $T=$ true
- $Q_{1} \sqcap Q_{2}=Q_{1} \wedge Q_{2}$
- $Q_{1} \sqcup Q_{2}=\overline{Q_{1} \vee Q_{2}}$ where $\bar{b}:=\bigwedge\{q \in P \cup \neg P \mid b \models q\}$ (i.e., strongest formula in $\operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right)$ that is implied by $Q_{1} \vee Q_{2}$)

Lemma 15.2

$\operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right)$ is a complete lattice with

- $\perp=$ false, $T=$ true
- $Q_{1} \sqcap Q_{2}=Q_{1} \wedge Q_{2}$
- $Q_{1} \sqcup Q_{2}=\overline{Q_{1} \vee Q_{2}}$ where $\bar{b}:=\bigwedge\{q \in P \cup \neg P \mid b \models q\}$ (i.e., strongest formula in $\operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right)$ that is implied by $Q_{1} \vee Q_{2}$)

Example 15.3

Let $P:=\left\{p_{1}, p_{2}, p_{3}\right\}$.
(1) For $Q_{1}:=p_{1} \wedge \neg p_{2}$ and $Q_{2}:=\neg p_{2} \wedge p_{3}$, we obtain

$$
\begin{aligned}
& Q_{1} \sqcap Q_{2}=Q_{1} \wedge Q_{2} \equiv p_{1} \wedge \neg p_{2} \wedge p_{3} \\
& Q_{1} \sqcup Q_{2}=Q_{1} \vee Q_{2} \equiv \neg p_{2} \wedge\left(p_{1} \vee p_{3}\right) \equiv \neg p_{2}
\end{aligned}
$$

Lemma 15.2

$\operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right)$ is a complete lattice with

- $\perp=$ false, $\top=$ true
- $Q_{1} \sqcap Q_{2}=Q_{1} \wedge Q_{2}$
- $Q_{1} \sqcup Q_{2}=\overline{Q_{1} \vee Q_{2}}$ where $\bar{b}:=\bigwedge\{q \in P \cup \neg P \mid b \models q\}$
(i.e., strongest formula in $\operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right)$ that is implied by $Q_{1} \vee Q_{2}$)

Example 15.3

Let $P:=\left\{p_{1}, p_{2}, p_{3}\right\}$.
(1) For $Q_{1}:=p_{1} \wedge \neg p_{2}$ and $Q_{2}:=\neg p_{2} \wedge p_{3}$, we obtain

$$
\begin{aligned}
& Q_{1} \sqcap Q_{2}=Q_{1} \wedge Q_{2} \equiv p_{1} \wedge \neg p_{2} \wedge p_{3} \\
& Q_{1} \sqcup Q_{2}=Q_{1} \vee Q_{2} \equiv \neg p_{2} \wedge\left(p_{1} \vee p_{3}\right) \equiv \neg p_{2}
\end{aligned}
$$

(2) For $Q_{1}:=p_{1} \wedge p_{2}$ and $Q_{2}:=p_{1} \wedge \neg p_{2}$, we obtain

$$
\begin{aligned}
& Q_{1} \sqcap Q_{2}=Q_{1} \wedge Q_{2} \equiv \text { false } \\
& Q_{1} \sqcup Q_{2}=\overline{Q_{1} \vee Q_{2}} \equiv \overline{p_{1} \wedge\left(p_{2} \vee \neg p_{2}\right)} \equiv p_{1}
\end{aligned}
$$

Predicate Abstraction III

Definition 15.4 (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

$$
\alpha: 2^{\Sigma} \rightarrow A b s\left(p_{1}, \ldots, p_{n}\right) \quad \text { and } \quad \gamma: A b s\left(p_{1}, \ldots, p_{n}\right) \rightarrow 2^{\Sigma}
$$

with

$$
\alpha(S):=\bigsqcup\left\{Q_{\sigma} \mid \sigma \in S\right\} \quad \text { and } \quad \gamma(Q):=\{\sigma \in \Sigma \mid \sigma \models Q\}
$$

where $Q_{\sigma}:=\bigwedge\left(\left\{p_{i} \mid 1 \leq i \leq n, \sigma \models p_{i}\right\} \cup\left\{\neg p_{i} \mid 1 \leq i \leq n, \sigma \not \models p_{i}\right\}\right)$.

Predicate Abstraction III

Definition 15.4 (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

$$
\alpha: 2^{\Sigma} \rightarrow \operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right) \quad \text { and } \quad \gamma: A b s\left(p_{1}, \ldots, p_{n}\right) \rightarrow 2^{\Sigma}
$$

with

$$
\alpha(S):=\bigsqcup\left\{Q_{\sigma} \mid \sigma \in S\right\} \quad \text { and } \quad \gamma(Q):=\{\sigma \in \Sigma \mid \sigma \models Q\}
$$

where $Q_{\sigma}:=\bigwedge\left(\left\{p_{i} \mid 1 \leq i \leq n, \sigma \models p_{i}\right\} \cup\left\{\neg p_{i} \mid 1 \leq i \leq n, \sigma \not \models p_{i}\right\}\right)$.

Example 15.5

- Let Var $:=\{\mathrm{x}, \mathrm{y}\}$
- Let $P:=\left\{p_{1}, p_{2}, p_{3}\right\}$ where $p_{1}:=(\mathrm{x}<=\mathrm{y}), p_{2}:=(\mathrm{x}=\mathrm{y}), p_{3}:=(\mathrm{x}>\mathrm{y})$

Predicate Abstraction III

Definition 15.4 (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

$$
\alpha: 2^{\Sigma} \rightarrow A b s\left(p_{1}, \ldots, p_{n}\right) \quad \text { and } \quad \gamma: A b s\left(p_{1}, \ldots, p_{n}\right) \rightarrow 2^{\Sigma}
$$

with

$$
\alpha(S):=\bigsqcup\left\{Q_{\sigma} \mid \sigma \in S\right\} \quad \text { and } \quad \gamma(Q):=\{\sigma \in \Sigma \mid \sigma \models Q\}
$$

where $Q_{\sigma}:=\bigwedge\left(\left\{p_{i} \mid 1 \leq i \leq n, \sigma \models p_{i}\right\} \cup\left\{\neg p_{i} \mid 1 \leq i \leq n, \sigma \not \models p_{i}\right\}\right)$.

Example 15.5

- Let Var $:=\{\mathrm{x}, \mathrm{y}\}$
- Let $P:=\left\{p_{1}, p_{2}, p_{3}\right\}$ where $p_{1}:=(\mathrm{x}<=\mathrm{y}), p_{2}:=(\mathrm{x}=\mathrm{y}), p_{3}:=(\mathrm{x}>\mathrm{y})$
- If $S=\left\{\sigma_{1}, \sigma_{2}\right\} \subseteq \Sigma$ with $\sigma_{1}=[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 2], \sigma_{2}=[\mathrm{x} \mapsto 2, \mathrm{y} \mapsto 2]$,
then $\alpha(S)=Q_{\sigma_{1}} \sqcup Q_{\sigma_{2}}$

$$
\begin{aligned}
& =\left(p_{1} \wedge \neg p_{2} \wedge \neg p_{3}\right) \sqcup\left(p_{1} \wedge p_{2} \wedge \neg p_{3}\right) \\
& =\left(p_{1} \wedge \neg p_{2} \wedge \neg p_{3}\right) \vee\left(p_{1} \wedge p_{2} \wedge \neg p_{3}\right) \\
& \equiv p_{1} \wedge \neg p_{3}
\end{aligned}
$$

Predicate Abstraction III

Definition 15.4 (Galois connection for predicate abstraction)

The Galois connection for predicate abstraction is determined by

$$
\alpha: 2^{\Sigma} \rightarrow \operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right) \quad \text { and } \quad \gamma: A b s\left(p_{1}, \ldots, p_{n}\right) \rightarrow 2^{\Sigma}
$$

with

$$
\alpha(S):=\bigsqcup\left\{Q_{\sigma} \mid \sigma \in S\right\} \quad \text { and } \quad \gamma(Q):=\{\sigma \in \Sigma \mid \sigma \models Q\}
$$

where $Q_{\sigma}:=\bigwedge\left(\left\{p_{i} \mid 1 \leq i \leq n, \sigma \models p_{i}\right\} \cup\left\{\neg p_{i} \mid 1 \leq i \leq n, \sigma \not \models p_{i}\right\}\right)$.

Example 15.5

- Let Var $:=\{\mathrm{x}, \mathrm{y}\}$
- Let $P:=\left\{p_{1}, p_{2}, p_{3}\right\}$ where $p_{1}:=(\mathrm{x}<=\mathrm{y}), p_{2}:=(\mathrm{x}=\mathrm{y}), p_{3}:=(\mathrm{x}>\mathrm{y})$
- If $S=\left\{\sigma_{1}, \sigma_{2}\right\} \subseteq \Sigma$ with $\sigma_{1}=[\mathrm{x} \mapsto 1, \mathrm{y} \mapsto 2], \sigma_{2}=[\mathrm{x} \mapsto 2, \mathrm{y} \mapsto 2]$,
then $\alpha(S)=Q_{\sigma_{1}} \sqcup Q_{\sigma_{2}}$

$$
\begin{aligned}
& =\left(p_{1} \wedge \neg p_{2} \wedge \neg p_{3}\right) \sqcup\left(p_{1} \wedge p_{2} \wedge \neg p_{3}\right) \\
& =\left(p_{1} \wedge \neg p_{2} \wedge \neg p_{3}\right) \vee\left(p_{1} \wedge p_{2} \wedge \neg p_{3}\right) \\
& \equiv p_{1} \wedge \neg p_{3}
\end{aligned}
$$

- If $Q=p_{1} \wedge \neg p_{2} \in \operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right)$, then $\gamma(Q)=\{\sigma \in \Sigma \mid \sigma(\mathrm{x})<\sigma(\mathrm{y})\}$

Outline

(1) Overview of Numerical Abstraction Domains
(2) Overview of Abstraction Refinement Using Predicates
(3) Predicate Abstraction
(4) Abstract Semantics for Predicate Abstraction

Abstract Semantics for Predicate Abstraction |

Definition 15.6 (Execution relation for predicate abstraction)

If $c \in C m d$ and $Q \in \operatorname{Abs}\left(p_{1}, \ldots, p_{n}\right)$, then $\langle c, Q\rangle$ is called an abstract configuration. The execution relation for predicate abstraction is defined by the following rules:

$$
\begin{aligned}
& \text { (skip) } \overline{\langle\text { skip, } Q\rangle \Rightarrow} \Rightarrow\langle\downarrow, Q\rangle \text { (asgn) } \overline{\langle x:=a, Q\rangle \Rightarrow\left\langle\downarrow, \sqcup\left\{Q_{\sigma\left[x \mapsto v l_{\sigma}(a)\right]} \mid \sigma \models Q\right\}\right\rangle} \\
& \begin{array}{l}
\text { (seq1) } \frac{\left\langle c_{1}, Q\right\rangle \Rightarrow\left\langle c_{1}^{\prime}, Q^{\prime}\right\rangle c_{1}^{\prime} \neq \downarrow}{\left\langle c_{1} ; c_{2}, Q\right\rangle \Rightarrow\left\langle c_{1}^{\prime} ; c_{2}, Q^{\prime}\right\rangle} \quad \text { (seq2) } \frac{\left\langle c_{1}, Q\right\rangle \Rightarrow\left\langle\downarrow, Q^{\prime}\right\rangle}{\left\langle c_{1} ; c_{2}, Q\right\rangle \Rightarrow\left\langle c_{2}, Q^{\prime}\right\rangle} \\
\text { (if1) } \frac{\text { if } \left.b \text { then } c_{1} \text { else } c_{2}, Q\right\rangle \Rightarrow\left\langle c_{1}, \overline{Q \wedge b\rangle}\right.}{\langle\text { if }} \\
\text { (if2) } \frac{\left\langle\text { if } b \text { then } c_{1} \text { else } c_{2}, Q\right\rangle \Rightarrow\left\langle c_{2}, \overline{Q \wedge \neg b\rangle}\right.}{\left\langle\text { (wh1) } \frac{\langle\text { while } b \text { do } c, Q\rangle \Rightarrow\langle c ; \text { while } b \text { do } c, \overline{Q \wedge b\rangle}}{\langle\text { while } b \text { do } c, Q\rangle \Rightarrow\langle\downarrow, \overline{Q \wedge \neg b\rangle}}\right.} \\
\text { (wh2) }
\end{array}
\end{aligned}
$$

Abstract Semantics for Predicate Abstraction II

Remarks:

- In Rule (asgn), $\bigsqcup\left\{Q_{\sigma\left[x \mapsto v a I_{\sigma}(a)\right]} \mid \sigma \models Q\right\}$ denotes the strongest postcondition of Q w.r.t. statement $x:=a$. It covers all states that are obtained from a state satisfying Q by applying the assignment x := a:
Abstract: $\quad\langle x:=a, Q\rangle \quad \Rightarrow\left\langle\downarrow, \bigsqcup\left\{Q_{\sigma[x \mapsto v a l \sigma(a)]} \mid \sigma \models Q\right\}\right\rangle$
$\stackrel{\downarrow \gamma}{\in \Sigma \mid \sigma \models Q\}\rangle \rightarrow\left\langle\downarrow,\left\{\sigma\left[x \mapsto \operatorname{val}_{\sigma}(a)\right] \mid \sigma \models Q\right\}\right\rangle}$

Abstract Semantics for Predicate Abstraction II

Remarks:

- In Rule (asgn), $\bigsqcup\left\{Q_{\sigma\left[x \mapsto v a l_{\sigma}(a)\right]} \mid \sigma \models Q\right\}$ denotes the strongest postcondition of Q w.r.t. statement $x:=a$. It covers all states that are obtained from a state satisfying Q by applying the assignment x := a:
Abstract: $\quad\langle x:=a, Q\rangle$

$$
\Rightarrow\left\langle\downarrow, \bigsqcup\left\{Q_{\sigma\left[x \mapsto \operatorname{va} I_{\sigma}(a)\right]} \mid \sigma \models Q\right\}\right\rangle
$$

$$
\downarrow \gamma \quad \uparrow \alpha
$$

Concrete: $\langle x:=a,\{\sigma \in \Sigma \mid \sigma \models Q\}\rangle \rightarrow\left\langle\downarrow,\left\{\sigma\left[x \mapsto \operatorname{val}_{\sigma}(a)\right] \mid \sigma \models Q\right\}\right\rangle$

- An abstract configuration of the form $\langle c$, false \rangle represents an unreachable configuration (as there is no $\sigma \in \Sigma$ such that $\sigma \models$ false) and can therefore be omitted

Abstract Semantics for Predicate Abstraction II

Remarks:

- In Rule (asgn), $\bigsqcup\left\{Q_{\sigma[x \mapsto \text { val }}^{\sigma(a)]} \mid \sigma \models Q\right\}$ denotes the strongest postcondition of Q w.r.t. statement $x:=a$. It covers all states that are obtained from a state satisfying Q by applying the assignment $x:=a$:
Abstract: $\quad\langle x:=a, Q\rangle$

$$
\Rightarrow\left\langle\downarrow, \bigsqcup\left\{Q_{\sigma\left[x \mapsto \operatorname{val} l_{\sigma}(a)\right]} \mid \sigma \models Q\right\}\right\rangle
$$

$\downarrow \gamma \quad \uparrow \alpha$
Concrete: $\langle x:=a,\{\sigma \in \Sigma \mid \sigma \models Q\}\rangle \rightarrow\left\langle\downarrow,\left\{\sigma\left[x \mapsto \operatorname{val}_{\sigma}(a)\right] \mid \sigma \models Q\right\}\right\rangle$

- An abstract configuration of the form $\langle c$, false \rangle represents an unreachable configuration (as there is no $\sigma \in \Sigma$ such that $\sigma \models$ false) and can therefore be omitted
- If $P=\emptyset$ (and thus $A b s(P)=\{$ true, false $\}$) and if no $b \in B E x p_{c}$ is a tautology or contradiction (i.e., resp. equivalent to true or false), then the abstract transition system corresponds to the control flow graph of c

Abstract Semantics for Predicate Abstraction III

```
Example 15.7
if [x > y] }\mp@subsup{}{}{1}\mathrm{ then
    while [\neg(y = 0)] ]}\mathrm{ do
        [x := x - 1;] 3;
        [y := y - 1;]}\mp@subsup{}{}{4}
    if [x > y] }\mp@subsup{}{}{5}\mathrm{ then
        [skip]}\mp@subsup{}{}{6}
    else
        [skip]}\mp@subsup{}{}{7}
else
    [skip]}\mp@subsup{}{}{8}
```


Abstract Semantics for Predicate Abstraction III

```
Example 15.7
if \([\mathrm{x}>\mathrm{y}]^{1}\) then
    while \([\neg(\mathrm{y}=0)]^{2}\) do
        [x := x - \(1 ;]^{3}\);
        \([y:=y-1 ;]^{4}\);
    if \([\mathrm{x}>\mathrm{y}]^{5}\) then
        [skip] \({ }^{6}\);
    else
        [skip] \({ }^{7}\);
else
    [skip] \({ }^{8}\);
```


Abstract Semantics for Predicate Abstraction III

```
Example 15.7
if \([\mathrm{x}>\mathrm{y}]^{1}\) then
    while \([\neg(y=0)]^{2}\) do
        [x := x - \(1 ;]^{3}\);
        \([y:=y-1 ;]^{4}\);
    if \([\mathrm{x}>\mathrm{y}]^{5}\) then
        [skip] \({ }^{6}\);
    else
        [skip] \({ }^{7}\);
else
    [skip] \({ }^{8}\);
```

- Claim: label 7 not reachable (as $\mathrm{x}>\mathrm{y}$ is a loop invariant)
- Proof: by predicate abstraction with $p_{1}:=(\mathrm{x}>\mathrm{y})$ and $p_{2}:=(\mathrm{x}>=\mathrm{y})$
- Abstract transition system: on the board
- Remark: $p_{1}:=(\mathrm{x}>\mathrm{y})$ alone not sufficient to prove loop invariant (as not necessarily valid after label 3)

