Static Program Analysis

Lecture 14: Abstract Interpretation IV (Application Example: 16-Bit Multiplication)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

RWTHAACHEN LINIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Outline

Recap: Abstract Semantics of WHILE

Correctness of Abstract Semantics

3 Application Example: 16-Bit Multiplication

Safe Approximation of Execution Relation

- **Reminder:** abstraction determined by Galois connection (α, γ) with $\alpha: L \to M$ and $\gamma: M \to L$
 - here: $L := 2^{\Sigma}$, M not fixed (usually $M = Var \rightarrow ...$ or $M = 2^{Var \rightarrow ...}$)
 - write *Abs* in place of *M*
 - thus $\alpha: 2^{\Sigma} \to Abs$ and $\gamma: Abs \to 2^{\Sigma}$
- Yields abstract semantics:

Definition (Abstract semantics of WHILE)

Given $\alpha: 2^{\Sigma} \to Abs$, an abstract semantics is defined by a family of functions

$$\mathsf{next}^\#_{c,c'}: \mathsf{Abs} \to \mathsf{Abs}$$

where $c \in Cmd$, $c' \in Cmd \cup \{\downarrow\}$, and each $\operatorname{next}_{c,c'}^{\#}$ is a safe approximation of $\operatorname{next}_{c,c'}$, i.e.,

$$\alpha(\mathsf{next}_{c,c'}(\gamma(abs))) \sqsubseteq_{Abs} \mathsf{next}_{c,c'}^{\#}(abs)$$

for every $abs \in Abs$.

Notation: $\langle c, abs \rangle \Rightarrow \langle c', abs' \rangle$ for $\text{next}_{c,c'}^{\#}(abs) = abs'$.

Extraction Functions

- Assumption: abstraction determined by pointwise mapping of concrete elements
- If $L=2^C$ and $M=2^A$ with $\sqsubseteq_L=\sqsubseteq_M=\subseteq$, then $\beta:C\to A$ is called an extraction function
- β determines Galois connection (α, γ) where

```
\alpha: L \to M: I \mapsto \beta(I) \ (= \{\beta(c) \mid c \in I\})
\gamma: M \to L: m \mapsto \beta^{-1}(m) \ (= \{c \in C \mid \beta(c) \in m\})
```

Example

① Parity abstraction (cf. Example 11.2): $\beta : \mathbb{Z} \to \{\text{even}, \text{odd}\}$ where

$$\beta(z) := \begin{cases} \text{even} & \text{if } z \text{ even} \\ \text{odd} & \text{if } z \text{ odd} \end{cases}$$

- ② Sign abstraction (cf. Example 11.3): $\beta : \mathbb{Z} \to \{+, -, 0\}$ with $\beta = \operatorname{sgn}$
- Interval abstraction (cf. Example 11.4): not definable by extraction function (as Int is not of the form 2^A)

Abstract Program States

Now: take values of variables into account

Definition (Abstract program state)

Let $\beta: \mathbb{Z} \to A$ be an extraction function.

• An abstract (program) state is an element of the set

$$\{\rho \mid \rho : Var \rightarrow A\},\$$

called the abstract state space.

- The abstract domain is denoted by $Abs := 2^{Var \rightarrow A}$.
- The abstraction function $\alpha: 2^{\Sigma} \to Abs$ is given by

$$\alpha(S) := \{ \beta \circ \sigma \mid \sigma \in S \}$$

for every $S \subseteq \Sigma$.

Abstract Evaluation of Expressions

Definition (Abstract evaluation functions)

Let $\rho: Var \to A$ be an abstract state.

1 $\operatorname{val}_{\rho}^{\#}: AExp \to 2^{A}$ is determined by (f arithmetic operation)

$$val_{
ho}^{\#}(z) := \{\beta(z)\}\ val_{
ho}^{\#}(x) := \{\rho(x)\}\ val_{
ho}^{\#}(f(a_1, \dots, a_n)) := f^{\#}(val_{
ho}^{\#}(a_1), \dots, val_{
ho}^{\#}(a_n))$$

② $val_{\rho}^{\#}: BExp \rightarrow 2^{\mathbb{B}}$ is determined by (g/h relational/Boolean op.)

$$val_{
ho}^{\#}(t) := \{t\}$$
 $val_{
ho}^{\#}(g(a_1, \ldots, a_n)) := g^{\#}(val_{
ho}^{\#}(a_1), \ldots, val_{
ho}^{\#}(a_n))$
 $val_{
ho}^{\#}(h(b_1, \ldots, b_n)) := h^{\#}(val_{
ho}^{\#}(b_1), \ldots, val_{
ho}^{\#}(b_n))$

Example (Sign abstraction)

Let
$$\rho(x) = +$$
 and $\rho(y) = -$.

•
$$val_0^{\#}(2 * x + y) = \{+, -, 0\}$$

2
$$val_{0}^{\#}(\neg(x + 1 > y)) = \{false\}$$

Abstract Semantics of WHILE I

Reminder: abstract domain is $Abs := 2^{Var \rightarrow A}$

Definition (Abstract execution relation for statements)

If $c \in Cmd$ and $abs \in Abs$, then $\langle c, abs \rangle$ is called an abstract configuration. The abstract execution relation is defined by the following rules:

$$(\mathsf{skip}) \overline{\langle \mathsf{skip}, abs \rangle} \Rightarrow \langle \downarrow, abs \rangle$$

$$(\mathsf{asgn}) \overline{\langle x := a, abs \rangle} \Rightarrow \langle \downarrow, \{ \rho[\mathsf{x} \mapsto \mathsf{a}'] \mid \rho \in \mathsf{abs}, \mathsf{a}' \in \mathsf{val}_{\rho}^{\#}(\mathsf{a}) \} \rangle$$

$$(\mathsf{seq1}) \overline{\langle c_1, abs \rangle} \Rightarrow \langle c_1', abs' \rangle \ c_1' \neq \downarrow$$

$$\langle c_1; c_2, abs \rangle \Rightarrow \langle c_1'; c_2, abs' \rangle$$

$$(\mathsf{seq2}) \overline{\langle c_1; c_2, abs \rangle} \Rightarrow \langle \downarrow, abs' \rangle$$

$$\langle c_2, abs \rangle \Rightarrow \langle c_2, abs' \rangle$$

Abstract Semantics of WHILE II

Definition (Abstract execution relation for statements; cont.)

$$(if1) \frac{\exists \rho \in abs : \mathsf{true} \in \mathit{val}^\#_\rho(b)}{\langle \mathsf{if} \ b \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2, abs \rangle} \\ \Rightarrow \langle c_1, abs \setminus \{\rho \in abs \mid \mathit{val}^\#_\rho(b) = \{\mathsf{false}\}\} \rangle \\ \frac{\exists \rho \in abs : \mathsf{false} \in \mathit{val}^\#_\rho(b)}{\langle \mathsf{if} \ b \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2, abs \rangle} \\ \Rightarrow \langle c_2, abs \setminus \{\rho \in abs \mid \mathit{val}^\#_\rho(b) = \{\mathsf{true}\}\} \rangle \\ \frac{\exists \rho \in abs : \mathsf{true} \in \mathit{val}^\#_\rho(b)}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, abs \rangle} \\ \Rightarrow \langle c; \mathsf{while} \ b \ \mathsf{do} \ c, abs \setminus \{\rho \in abs \mid \mathit{val}^\#_\rho(b) = \{\mathsf{false}\}\} \rangle \\ \frac{\exists \rho \in abs : \mathsf{false} \in \mathit{val}^\#_\rho(b)}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, abs \rangle \Rightarrow \langle \downarrow, abs \setminus \{\rho \in abs \mid \mathit{val}^\#_\rho(b) = \{\mathsf{true}\}\} \rangle} \\ (\mathsf{wh2}) \frac{\langle \mathsf{vhile} \ b \ \mathsf{do} \ c, abs \rangle \Rightarrow \langle \downarrow, abs \setminus \{\rho \in abs \mid \mathit{val}^\#_\rho(b) = \{\mathsf{true}\}\} \rangle}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, abs \rangle \Rightarrow \langle \downarrow, abs \setminus \{\rho \in abs \mid \mathit{val}^\#_\rho(b) = \{\mathsf{true}\}\} \rangle}$$

Abstract Semantics of WHILE III

Definition (Abstract transition function)

The abstract transition function is defined by the family of mappings

$$\mathsf{next}_{c,c'}^\# : \mathsf{Abs} \to \mathsf{Abs},$$

given by

$$\mathsf{next}_{c,c'}^\#(\mathit{abs}) := \bigcup \{ \mathit{abs}' \in \mathit{Abs} \mid \langle c, \mathit{abs} \rangle \Rightarrow \langle c', \mathit{abs}' \rangle \}$$

Example (Hailstone Sequences; cf. Example 13.1)

```
[skip]^1;

while [\neg(n = 1)]^2 do

if [even(n)]^3 then

[n := n / 2]^4; [skip]^5;

else

[n := 3 * n + 1]^6; [skip]^7;
```

Execution relation with parity abstraction: see following slide (courtesy B. König)

Abstrakte Interpretation von Hailstone

Outline

Recap: Abstract Semantics of WHILE

Correctness of Abstract Semantics

3 Application Example: 16-Bit Multiplication

Correctness of Abstract Semantics

Theorem 14.1 (Soundness of abstract semantics)

For each $c \in Cmd$ and $c' \in Cmd \cup \{\downarrow\}$, $\operatorname{next}_{c,c'}^{\#}$ is a safe approximation of $\operatorname{next}_{c,c'}$, i.e., for every $abs \in Abs$, $\alpha(\operatorname{next}_{c,c'}(\gamma(abs))) \subseteq \operatorname{next}_{c,c'}^{\#}(abs)$.

Correctness of Abstract Semantics

Theorem 14.1 (Soundness of abstract semantics)

For each $c \in Cmd$ and $c' \in Cmd \cup \{\downarrow\}$, $next_{c,c'}^{\#}$ is a safe approximation of $next_{c,c'}$, i.e., for every $abs \in Abs$,

$$\alpha(\mathsf{next}_{c,c'}(\gamma(abs))) \subseteq \mathsf{next}_{c,c'}^{\#}(abs).$$

The soundness proof employs the following auxiliary lemma.

Lemma 14.2 (Soundness of abstract evaluation)

Let $\beta : \mathbb{Z} \to A$ be an extraction function.

- For every $a \in AExp$ and $\sigma \in \Sigma$, $\beta(val_{\sigma}(a)) \in val_{\beta \circ \sigma}^{\#}(a)$.
- **2** For every $b \in BExp$ and $\sigma \in \Sigma$, $val_{\sigma}(b) \in val_{\beta \circ \sigma}^{\#}(b)$.

Proof (Lemma 14.2).

omitted

Correctness of Abstract Semantics

Theorem 14.1 (Soundness of abstract semantics)

For each $c \in Cmd$ and $c' \in Cmd \cup \{\downarrow\}$, $next^{\#}_{c,c'}$ is a safe approximation of $next_{c,c'}$, i.e., for every $abs \in Abs$,

$$\alpha(\mathsf{next}_{c,c'}(\gamma(abs))) \subseteq \mathsf{next}_{c,c'}^{\#}(abs).$$

The soundness proof employs the following auxiliary lemma.

Lemma 14.2 (Soundness of abstract evaluation)

Let $\beta : \mathbb{Z} \to A$ be an extraction function.

- For every $a \in AExp$ and $\sigma \in \Sigma$, $\beta(val_{\sigma}(a)) \in val_{\beta \circ \sigma}^{\#}(a)$.
- **②** For every $b \in BExp$ and $\sigma \in \Sigma$, $val_{\sigma}(b) \in val_{\beta \circ \sigma}^{\#}(b)$.

Proof (Lemma 14.2).

omitted

Proof (Theorem 14.1).

on the board

Outline

Recap: Abstract Semantics of WHILE

Correctness of Abstract Semantics

3 Application Example: 16-Bit Multiplication

A 16-Bit Multiplier

Example 14.3 (16-bit multiplier)

```
c = [\text{out} := 0]^1;
     [ovf := 0]^2;
     while [\neg(f1=0) \land ovf=0]^3 do
       if [lsb(f1)=1]^4 then
         [(ovf,out) := (out:17)+f2]^5;
       else
          [skip]<sup>6</sup>;
       [f1 := f1>>1]^7;
       if [\neg(f1=0) \land ovf=0]^8 then
         [(ovf,f2) := (f2:17) <<1]^9;
       else
          [skip]^{10}:
```

- f1, f2: 16-bit input factors
- out: 16-bit result
- ovf: overflow bit
- lsb(z): least significant bit of z
- (z:k): extension of z to k bits by adding leading zeros
- (x,y) := z: simultaneous assignment with split of z
- <<1/>>1: left/right shift

Procedure: in each iteration,

- if LSB of f1 is set (4), add f2 to out (5)
- 2 shift f1 right (7)
- 3 shift **f2** left (9)

A 16-Bit Multiplier

Example 14.3 (16-bit multiplier)

```
c = [\text{out} := 0]^1;
    [ovf := 0]^2;
    while [\neg(f1=0) \land ovf=0]^3 do
       if [lsb(f1)=1]^4 then
         [(ovf,out) := (out:17)+f2]^5;
       else
         [skip]^6;
       [f1 := f1>>1]^7;
       if [\neg(f1=0) \land ovf=0]^8 then
         [(ovf,f2) := (f2:17) <<1]^9;
       else
         [skip]^{10};
```

- f1, f2: 16-bit input factors
- out: 16-bit result
- ovf: overflow bit
- lsb(z): least significant bit of z
- (z:k): extension of z to k bits by adding leading zeros
- (x,y) := z: simultaneous assignment with split of z
- <<1/>>1: left/right shift

Procedure: in each iteration,

- if LSB of f1 is set (4), add f2 to out (5)
- 2 shift f1 right (7)
- shift f1 right (7)
 shift f2 left (9)

RWITHAACHEN

Expected result: if $\langle c, \sigma \rangle \rightarrow^+ \langle \downarrow, \sigma' \rangle$, then

- $\sigma'(\text{out}) = \sigma(\text{f1}) \cdot \sigma(\text{f2})$ or
- $\sigma'(\text{ovf}) = 1$

(termination is trivial)

Example run: on the board

The Abstraction

(see E.M. Clarke, O. Grumberg, D.A. Peled: Model Checking, MIT Press, 1999, pp. 205)

- f1: no abstraction (as f1 controls multiplication)
- f2: congruence modulo m
 (for specific values of m see Theorem 14.6)
 - extraction function: $\beta: \mathbb{Z} \to \{0, \dots, m-1\}: z \mapsto z \mod m$ (see Exercise 9.1)
 - congruence: $z_1 \equiv z_2 \pmod{m}$ iff $z_1 \mod m = z_2 \mod m$
- out: congruence modulo m
- ovf: no abstraction (single bit)

The Abstraction

(see E.M. Clarke, O. Grumberg, D.A. Peled: Model Checking, MIT Press, 1999, pp. 205)

- f1: no abstraction (as f1 controls multiplication)
- f2: congruence modulo m
 (for specific values of m see Theorem 14.6)
 - extraction function: $\beta: \mathbb{Z} \to \{0,\ldots,m-1\}: z \mapsto z \bmod m$ (see Exercise 9.1)
 - congruence: $z_1 \equiv z_2 \pmod{m}$ iff $z_1 \mod m = z_2 \mod m$
- out: congruence modulo m
- ovf: no abstraction (single bit)

Lemma 14.4 (Properties of modulo congruence)

For every
$$z_1, z_2 \in \mathbb{Z}$$
 and $m \ge 1$,
$$(z_1 + z_2) \bmod m \equiv ((z_1 \bmod m) + (z_2 \bmod m)) \bmod m$$

$$(z_1 - z_2) \bmod m \equiv ((z_1 \bmod m) - (z_2 \bmod m)) \bmod m$$

$$(z_1 \cdot z_2) \bmod m \equiv ((z_1 \bmod m) \cdot (z_2 \bmod m)) \bmod m$$

Thus: modulo value of expression determined by modulo values of subexpressions

Abstract Interpretation of Multiplier

Example 14.5 (Abstraction of 16-bit multiplier; cf. Example 14.3)

Abstract execution for

- $f1 = 101_2 (= 5)$
- $f2 = 1001010_2 (= 74)$
- m = 5. 74 mod 5 = 4
- out, ovf initially undefined
- → initial abstract value:

$$abs = \{ [\mathtt{f1} \mapsto 101_2, \mathtt{f2} \mapsto \mathtt{4}, \mathtt{out} \mapsto r, \mathtt{ovf} \mapsto b] \mid r \in \{0, \dots, \mathtt{4}\}, b \in \mathbb{B} \}$$

First transitions: on the board

Abstract Interpretation of Multiplier

Example 14.5 (Abstraction of 16-bit multiplier; cf. Example 14.3)

Abstract execution for

- $f1 = 101_2 (= 5)$
- $f2 = 1001010_2 (= 74)$
- m = 5, 74 mod 5 = 4
- out, ovf initially undefined
- → initial abstract value:

$$abs = \{ [\mathtt{f1} \mapsto 101_2, \mathtt{f2} \mapsto \mathtt{4}, \mathtt{out} \mapsto r, \mathtt{ovf} \mapsto b] \mid r \in \{0, \dots, \mathtt{4}\}, b \in \mathbb{B} \}$$

First transitions: on the board

Problem: choose which values of m to deduce correctness of concrete result from correctness of all abstract results?

Theorem 14.6 (Chinese Remainder Theorem; without proof)

Let $m_1, \ldots, m_k \ge 1$ be pairwise relatively prime (i.e., $\gcd(m_i, m_j) = 1$ for $1 \le i < j \le k$). Let $m := m_1 \cdot \ldots \cdot m_k$, and let $z_1, \ldots, z_k \in \mathbb{Z}$. Then there is a unique $z \in \mathbb{Z}$ such that

 $0 \le z < m$ and $z \equiv z_i \pmod{m_i}$ for all $i \in \{1, \dots, k\}$.

Theorem 14.6 (Chinese Remainder Theorem; without proof)

Let $m_1,\ldots,m_k\geq 1$ be pairwise relatively prime (i.e., $\gcd(m_i,m_j)=1$ for $1\leq i< j\leq k$). Let $m:=m_1\cdot\ldots\cdot m_k$, and let $z_1,\ldots,z_k\in\mathbb{Z}$. Then there is a unique $z\in\mathbb{Z}$ such that

$$0 \le z < m$$
 and $z \equiv z_i \pmod{m_i}$ for all $i \in \{1, \dots, k\}$.

Application: for fixed initial (abstract) value of f1 and f2,

- z = concrete final value of out
- $z_i = \text{abstract final value of out } \pmod{m_i}$
- k := 5, $m_1 := 5$, $m_2 := 7$, $m_3 := 9$, $m_4 := 11$, $m_5 := 32$ (thus $m = 5 \cdot 7 \cdot 9 \cdot 11 \cdot 32 = 110880 > 2^{16}$)
- Theorem 14.6 yields unique z < m with $z \equiv z_i \pmod{m_i}$
- $m > 2^{16} \implies z$ is correct result of multiplication (see next slide)
- thus termination implies correct result or overflow

Theorem 14.6 (Chinese Remainder Theorem; without proof)

Let $m_1,\ldots,m_k\geq 1$ be pairwise relatively prime (i.e., $\gcd(m_i,m_j)=1$ for $1\leq i< j\leq k$). Let $m:=m_1\cdot\ldots\cdot m_k$, and let $z_1,\ldots,z_k\in\mathbb{Z}$. Then there is a unique $z\in\mathbb{Z}$ such that

$$0 \le z < m$$
 and $z \equiv z_i \pmod{m_i}$ for all $i \in \{1, \dots, k\}$.

Application: for fixed initial (abstract) value of f1 and f2,

- z = concrete final value of out
- $z_i = \text{abstract final value of out } \pmod{m_i}$
- k := 5, $m_1 := 5$, $m_2 := 7$, $m_3 := 9$, $m_4 := 11$, $m_5 := 32$ (thus $m = 5 \cdot 7 \cdot 9 \cdot 11 \cdot 32 = 110880 > 2^{16}$)
- Theorem 14.6 yields unique z < m with $z \equiv z_i \pmod{m_i}$
- $m > 2^{16} \implies z$ is correct result of multiplication (see next slide)
- thus termination implies correct result or overflow

Efficiency:

- Exhaustive testing: $2^{16} \cdot 2^{16} = 2^{32} = 4.29 \cdot 10^9$ runs
- Abstract interpretation: $2^{16} \cdot (5+7+9+11+32) = 4.19 \cdot 10^6$ runs

To show:
$$\forall y_1, y_2 \in \mathbb{B}^{16}, \sigma, \sigma' \in \Sigma : \sigma(\mathtt{f1}) = y_1, \sigma(\mathtt{f2}) = y_2, \ \langle c, \sigma \rangle \to^+ \langle \downarrow, \sigma' \rangle, \sigma'(\mathtt{ovf}) = 0 \implies \sigma'(\mathtt{out}) = y_1 \cdot y_2$$

```
To show: \forall y_1, y_2 \in \mathbb{B}^{16}, \sigma, \sigma' \in \Sigma : \sigma(\mathtt{f1}) = y_1, \sigma(\mathtt{f2}) = y_2, \langle c, \sigma \rangle \to^+ \langle \downarrow, \sigma' \rangle, \sigma'(\mathtt{ovf}) = 0 \implies \sigma'(\mathtt{out}) = y_1 \cdot y_2 Known: \forall i \in \{1, \dots, 5\}, y_1, y_2 \in \mathbb{B}^{16}, abs, abs' \in Abs : abs = \{[\mathtt{f1} \mapsto y_1, \mathtt{f2} \mapsto y_2^\#, \mathtt{out} \mapsto r, \mathtt{ovf} \mapsto b] \mid r \in \{0, \dots, m_i - 1\}, b \in \mathbb{B}\}, \langle c, abs \rangle \Rightarrow^+ \langle \downarrow, abs' \rangle \implies \left( \forall \rho' \in abs' : \rho'(\mathtt{ovf}) = 0 \implies \rho'(\mathtt{out}) \stackrel{(*)}{=} (y_1 \cdot y_2^\#)^\# \right) (where x^\# := x \bmod m_i)
```

```
To show: \forall y_1, y_2 \in \mathbb{B}^{16}, \sigma, \sigma' \in \Sigma : \sigma(\mathtt{f1}) = y_1, \sigma(\mathtt{f2}) = y_2, \langle c, \sigma \rangle \to^+ \langle \downarrow, \sigma' \rangle, \sigma'(\mathtt{ovf}) = 0 \implies \sigma'(\mathtt{out}) = y_1 \cdot y_2 Known: \forall i \in \{1, \dots, 5\}, y_1, y_2 \in \mathbb{B}^{16}, abs, abs' \in Abs : abs = \{[\mathtt{f1} \mapsto y_1, \mathtt{f2} \mapsto y_2^\#, \mathtt{out} \mapsto r, \mathtt{ovf} \mapsto b] \mid r \in \{0, \dots, m_i - 1\}, b \in \mathbb{B}\}, \langle c, abs \rangle \Rightarrow^+ \langle \downarrow, abs' \rangle \implies \left( \forall \rho' \in abs' : \rho'(\mathtt{ovf}) = 0 \implies \rho'(\mathtt{out}) \stackrel{(*)}{=} (y_1 \cdot y_2^\#)^\# \right) (where x^\# := x \bmod m_i)

Proof: \bullet Let y_1, y_2 \in \mathbb{B}^{16}, \sigma(\mathtt{f1}) = y_1, \sigma(\mathtt{f2}) = y_2, \langle c, \sigma \rangle \to^+ \langle \downarrow, \sigma' \rangle, \sigma'(\mathtt{ovf}) = 0, and z_i := (y_1 \cdot y_2)^\# for i \in \{1, \dots, 5\}
```

```
To show: \forall y_1, y_2 \in \mathbb{B}^{16}, \sigma, \sigma' \in \Sigma : \sigma(\mathtt{f1}) = y_1, \sigma(\mathtt{f2}) = y_2, \langle c, \sigma \rangle \to^+ \langle \downarrow, \sigma' \rangle, \sigma'(\mathtt{ovf}) = 0 \implies \sigma'(\mathtt{out}) = y_1 \cdot y_2 Known: \forall i \in \{1, \dots, 5\}, y_1, y_2 \in \mathbb{B}^{16}, abs, abs' \in Abs : abs = \{[\mathtt{f1} \mapsto y_1, \mathtt{f2} \mapsto y_2^\#, \mathtt{out} \mapsto r, \mathtt{ovf} \mapsto b] \mid r \in \{0, \dots, m_i - 1\}, b \in \mathbb{B}\}, \langle c, abs \rangle \Rightarrow^+ \langle \downarrow, abs' \rangle \Rightarrow \left( \forall \rho' \in abs' : \rho'(\mathtt{ovf}) = 0 \implies \rho'(\mathtt{out}) \stackrel{(*)}{=} (y_1 \cdot y_2^\#)^\# \right) (where x^\# := x \bmod m_i)

Proof: • Let y_1, y_2 \in \mathbb{B}^{16}, \sigma(\mathtt{f1}) = y_1, \sigma(\mathtt{f2}) = y_2, \langle c, \sigma \rangle \to^+ \langle \downarrow, \sigma' \rangle, \sigma'(\mathtt{ovf}) = 0, \text{ and } z_i := (y_1 \cdot y_2)^\# \text{ for } i \in \{1, \dots, 5\}
• Theorem 14.6 yields unique z < m such that z \equiv z_i \pmod {m_i} for all i \in \{1, \dots, 5\}
```

Proof (Correctness of abstraction).

```
To show: \forall y_1, y_2 \in \mathbb{B}^{16}, \sigma, \sigma' \in \Sigma : \sigma(\mathtt{f1}) = y_1, \sigma(\mathtt{f2}) = y_2, \langle c, \sigma \rangle \to^+ \langle \downarrow, \sigma' \rangle, \sigma'(\mathtt{ovf}) = 0 \implies \sigma'(\mathtt{out}) = y_1 \cdot y_2 Known: \forall i \in \{1, \dots, 5\}, y_1, y_2 \in \mathbb{B}^{16}, abs, abs' \in Abs : abs = \{[\mathtt{f1} \mapsto y_1, \mathtt{f2} \mapsto y_2^\#, \mathtt{out} \mapsto r, \mathtt{ovf} \mapsto b] \mid r \in \{0, \dots, m_i - 1\}, b \in \mathbb{B}\}, \langle c, abs \rangle \Rightarrow^+ \langle \downarrow, abs' \rangle \implies \left( \forall \rho' \in abs' : \rho'(\mathtt{ovf}) = 0 \implies \rho'(\mathtt{out}) \stackrel{(*)}{=} (y_1 \cdot y_2^\#)^\# \right) (where x^\# := x \bmod m_i)
```

Proof:

- Let $y_1, y_2 \in \mathbb{B}^{16}$, $\sigma(\mathtt{f1}) = y_1$, $\sigma(\mathtt{f2}) = y_2$, $\langle c, \sigma \rangle \rightarrow^+ \langle \downarrow, \sigma' \rangle$, $\sigma'(\mathtt{ovf}) = 0$, and $z_i := (y_1 \cdot y_2)^\#$ for $i \in \{1, \dots, 5\}$
- Theorem 14.6 yields unique z < m such that $z \equiv z_i \pmod{m_i}$ for all $i \in \{1, ..., 5\}$
- On the other hand, correctness of modulo abstraction implies $\rho'(\text{ovf}) = 0$ and $(\sigma'(\text{out}))^\# = \rho'(\text{out})$ (correctness of abstraction) $= (v_1 \cdot v_+^\#)^\#$ (*)

$$(\sigma(\mathsf{otc}))' = \rho(\mathsf{otc})' \quad (\mathsf{correctness} \; \mathsf{or} \; \mathsf{all})$$

$$= (y_1 \cdot y_2^\#)^\# \quad (*)$$

$$= (y_1 \cdot y_2)^\# \quad (\mathsf{Lemma} \; \mathsf{14.4})$$

$$\implies \sigma'(\mathsf{out}) = \mathsf{z} = \mathsf{y}_1 \cdot \mathsf{y}_2$$