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@ Recap: Abstract Semantics of WHILE
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Safe Approximation of Execution Relation

e Reminder: abstraction determined by Galois connection («, ) with
a:L—-Mandy: M — L
o here: L:=2% M not fixed (usually M = Var — ... or M = 2‘/‘"_’“')
e write Abs in place of M
o thus o : 2% — Abs and 7 : Abs — 2%

@ Yields abstract semantics:
Definition (Abstract semantics of WHILE)

Given a : 2% — Abs, an abstract semantics is defined by a family of
functions

next? , : Abs — Abs
where ¢ € Cmd, ¢’ € Cmd U {]}, and each nextc#c, is a safe
approximation of next. ., i.e.,
a(nextc or(y(abs))) Cabs nextféc,(abs)

for every abs € Abs.
Notation: (c, abs) = (c’, abs’) for nextc#’c,(abS) = abs’.
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Extraction Functions

@ Assumption: abstraction determined by pointwise mapping of
concrete elements
o If L=2%and M =22 with C; = Cpy = C, then §: C — Ais called
an extraction function
@ (3 determines Galois connection («,y) where
a:L—=-M:1— p(l)(={B(c)| cel})
Y:M—L:mw— B7Ym) (={ce C|pB(c) e m})

Example
Q Parity abstraction (cf. Example 11.2): 5 : Z — {even, odd} where

__ Jeven if z even
blz) = {odd if 7 odd

@ Sign abstraction (cf. Example 11.3): §:Z — {+, —,0} with 8 = sgn
@ Interval abstraction (cf. Example 11.4): not definable by extraction
function (as Int is not of the form 24)
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Abstract Program States

Now: take values of variables into account

Definition (Abstract program state)
Let 5 : Z — A be an extraction function.
@ An abstract (program) state is an element of the set
{p|p:Var = A},
called the abstract state space.
@ The abstract domain is denoted by Abs := 2Var—=4,
@ The abstraction function o : 2> — Abs is given by
a(S) ={Boo|oceS}

for every S C Y.
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Abstract Evaluation of Expressions

Definition (Abstract evaluation functions)

Let p: Var — A be an abstract state.
© val’ : AExp — 2" is determined by (f arithmetic operation)
valf(z) := {6(2)}
valif(x) = {p(x)}
va/f(f(al, cooyap)) = f#(valﬁ(al), e va/f(a,,))
Q va/f : BExp — 2% is determined by (g/h relational /Boolean op.)
va/f(t) = {t}
va/f(g(al, cooyap)) = g#(va/f(al), o va/j'é(an))
val# (h(by,.. ., bn)) := h#(val’ (by), ..., val? (b))

Example (Sign abstraction)

Let p(x) = + and p(y) = —.
o va/f(Q * x +y)={+,—,0}
Q va/f(—'(x + 1 > y)) = {false}
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Abstract Semantics of WHILE |

Reminder: abstract domain is Abs := 2Var—A

Definition (Abstract execution relation for statements)

If c € Cmd and abs € Abs, then (c, abs) is called an abstract
configuration. The abstract execution relation is defined by the following
rules:

(skie) (skip, abs) = ({, abs)

) (x := a,abs) = (|, {p[x — &] | p € abs,a € val¥(a)})

(c1, abs) = (c}, abs') ¢} # |

(c1; co,abs) = (ci;co, abs’)

(seql)

(c1,abs) = (], abs’)
(c1;¢o,abs) = (cp, abs’)

(seq2)
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Abstract Semantics of WHILE Il

Definition (Abstract execution relation for statements; cont.)

dp € abs : true € valf(b)

(if1)

(if b then cj else ¢y, abs)
= (cy,abs \ {p € abs | val#(b) = {false}})

dp € abs : false € valf(b)

(if2)
(if b then ¢j else ¢y, abs)

= (c2,abs \ {p € abs | va/f(b) = {true}})
dp € abs : true € valf(b)

(while b do c, abs)
= (c;while b do c,abs \ {p € abs | va/f(b) = {false}})

(wh1)

Jdp € abs : false € valf(b)
(while b do ¢, abs) = ({,abs \ {p € abs | valﬁ(b) = {true}})

(wh2)
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Abstract Semantics of WHILE 11
Definition (Abstract transition function)

The abstract transition function is defined by the family of mappings
nextﬁc, : Abs — Abs,
given by
nextffc,(abs) = U{abs' € Abs | (c,abs) = (c’, abs’)}

Example (Hailstone Sequences; cf. Example 13.1)

[skip]';
while [~(n = 1)]% do
if [even(n)]® then
[n :=n / 2]*;[skip]®;
else
[n := 3 *x n + 1]%;[skip]’;

Execution relation with parity abstraction: see following slide (courtesy B. Konig)

v
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(Iskip]*; . . ., {[n~ odd]}) {ln = odd]} =

/
(vhile [nA1] ﬂ {In+ odd]}) e (smile A1 ., (o even]})
(it [even ]’ ﬂ {In+ odd]}) (if [even(m]? ﬂ ([ even]})
— ([ne=Bene1]5;. ﬂ {ln » odd]}) (2 ﬂ {ln » even})
([skipls .. -,ﬂ{[n s even]}) —— ([skipls .. .. {fn~ even]. [n > odd]})
(uhile A1) ..., {[n > even],[n — odd]}) ——
\ \ (if [even@P ..., {[n > even],[n — odd]})




© Correctness of Abstract Semantics
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Correctness of Abstract Semantics

Theorem 14.1 (Soundness of abstract semantics)

For each c € Cmd and ¢’ € Cmd U {|}, nextfc, is a safe approximation of
next. s, i.e., for every abs € Abs,
a(nextc o (y(abs))) C next” ,(abs).

c,c’
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Correctness of Abstract Semantics

Theorem 14.1 (Soundness of abstract semantics)

For each c € Cmd and ¢’ € Cmd U {|}, nextfc, is a safe approximation of
next. s, i.e., for every abs € Abs,
a(nextc o (y(abs))) C next” ,(abs).

c,c’

The soundness proof employs the following auxiliary lemma.

Lemma 14.2 (Soundness of abstract evaluation)

Let B : Z — A be an extraction function.
© Forevery a € AExp and o € ¥, B(val,(a)) € val?og(a).

@ For every b € BExp and o € ¥, val,(b) € va/?fw(b).

Proof (Lemma 14.2).

omitted
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Correctness of Abstract Semantics

Theorem 14.1 (Soundness of abstract semantics)

For each c € Cmd and ¢’ € Cmd U {|}, nextfc, is a safe approximation of
next. s, i.e., for every abs € Abs,

a(nextc o/(y(abs))) C next” ,(abs).

c,c’

The soundness proof employs the following auxiliary lemma.

Lemma 14.2 (Soundness of abstract evaluation)

Let B : Z — A be an extraction function.
© Forevery a € AExp and o € ¥, B(val,(a)) € val?;w( ).

@ For every b € BExp and o € ¥, val,(b) € valgﬁw(b)

Proof (Lemma 14.2).

omitted

Proof (Theorem 14.1).

on the board
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e Application Example: 16-Bit Multiplication
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A 16-Bit Multiplier

Example 14.3 (16-bit multiplier)

c = [out := 0]%;

[ovE := 0]%; @ f1, £2: 16-bit input factors
while [ﬁ(f1=0) A OVf=O]3 do @ out: 16-bit result
if [1sb(£1)=1]* then o ovf: overflow bit
[(ovE,out) := (out:17)+£2]°; Oovi: overriow bi
else @ 1sb(z): least significant bit of z
[skip]®; @ (z:k): extension of z to k bits

[f1 := £1>>1]7;
if [~(£1=0) A ovf=0]® then
[CovE,£2) := (£2:17)<<1]%;
else
[skip]®?; @ <<1/>>1: left/right shift

by adding leading zeros

(x,y) :=2z: simultaneous
assignment with split of z

Procedure: in each iteration,
Q if LSB of £1 is set (4),
add £2 to out (5)

@ shift £1 right (7)
© shift £2 left (9)
RWTHAACHE
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A 16-Bit Multiplier

Example 14.3 (16-bit multiplier)

c = [out := 0]%;

[ovE := 0]%; @ f1, £2: 16-bit input factors
while [ﬁ(f1=0) A OVf=O]3 do @ out: 16-bit result
if [1sb(£1)=1]* then o ovf: overflow bit
[(ovE,out) := (out:17)+£2]°; Oovi: overriow bi
else @ 1sb(z): least significant bit of z
[skip]®; @ (z:k): extension of z to k bits

[f1 := £1>>1]7;
if [~(£1=0) A ovf=0]® then
[CovE,£2) := (£2:17)<<1]%;

by adding leading zeros

(x,y) :=2z: simultaneous
assignment with split of z

else
[skip]®?; @ <<1/>>1: left/right shift
Procedure: in each iteration, Expected result: if (c,0) =T (|, 0’), then
Q if LSB of £1 is set (4), @ o'(out) = o(£f1) - o(£2) or
add £2 to out (5) @ o'(ovE) =1
@ shift £1 right (7) (termination is trivial)

© shift £2 left (9) Example run: on the board
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The Abstraction

(see E.M. Clarke, O. Grumberg, D.A. Peled: Model Checking, MIT Press, 1999, pp. 205)

e f1: no abstraction (as £1 controls multiplication)
@ £2: congruence modulo m
(for specific values of m — see Theorem 14.6)

e extraction function: 8:Z — {0,...,m—1} : z+— zmod m
(see Exercise 9.1)

e congruence: z; = z (mod m) iff zz mod m = z, mod m
@ out: congruence modulo m
@ ovf: no abstraction (single bit)
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The Abstraction

(see E.M. Clarke, O. Grumberg, D.A. Peled: Model Checking, MIT Press, 1999, pp. 205)

£1: no abstraction (as £1 controls multiplication)
£2: congruence modulo m
(for specific values of m — see Theorem 14.6)
e extraction function: 8:Z — {0,...,m—1} : z+— zmod m
(see Exercise 9.1)
e congruence: z; = z (mod m) iff zz mod m = z, mod m
out: congruence modulo m
@ ovf: no abstraction (single bit)

Lemma 14.4 (Properties of modulo congruence)

For every z1,z0 € Z and m > 1,
(z1 + z2) mod m = ((z1 mod m) + (z2 mod m)) mod m
(z1 — z2) mod m = ((zz mod m) — (z, mod m)) mod m
(z1 - z2) mod m = ((z1 mod m) - (z mod m)) mod m

Thus: modulo value of expression determined by modulo values of

subexpressions
RWNTH EN
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Abstract Interpretation of Multiplier

Example 14.5 (Abstraction of 16-bit multiplier; cf. Example 14.3)

Abstract execution for

e f1 =101, (=5)

e 2 =1001010, (= 74)

e m=>5,74mod5 =4

@ out, ovf initially undefined
= initial abstract value:

abs = {[f1 > 1015,£2 — 4,out — r,ovf — b] |
red{0,...,4},b € B}

First transitions: on the board
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Abstract Interpretation of Multiplier

Example 14.5 (Abstraction of 16-bit multiplier; cf. Example 14.3)

Abstract execution for

e f1 =101, (=5)

e 2 =1001010, (= 74)

e m=>5,74mod5 =4

@ out, ovf initially undefined
= initial abstract value:

abs = {[f1 > 1015,£2 — 4,out — r,ovf — b] |
red{0,...,4},b € B}

First transitions: on the board

Problem: choose which values of m to deduce correctness of concrete
result from correctness of all abstract results?
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Ensuring Correctness |

Theorem 14.6 (Chinese Remainder Theorem; without proof)

Let my, ..., my > 1 be pairwise relatively prime (i.e., gcd(m;, m;) =1 for
1<i<j<k) Letem:=my-...-my, and let z1,...,zx € Z. Then there
is a unique z € Z such that

0<z<m and z=2z (modm;) forallie{l,... k}.
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Ensuring Correctness |

Theorem 14.6 (Chinese Remainder Theorem; without proof)

Let my, ..., my > 1 be pairwise relatively prime (i.e., gcd(m;, m;) =1 for
1<i<j<k) Letem:=my-...-my, and let z1,...,zx € Z. Then there
is a unique z € Z such that

0<z<m and z=2z (modm;) forallie{l,... k}.

Application: for fixed initial (abstract) value of £1 and £2,
@ z = concrete final value of out
@ z; = abstract final value of out (mod my;)
@ k:=5 m =5 my:=7,m3:=9, myg =11, mg := 32
(thus m=5-7-9.11-32 = 110880 > 219)
@ Theorem 14.6 yields unique z < m with z = z; (mod m;)
e m> 2% — zis correct result of multiplication (see next slide)
@ thus termination implies correct result or overflow
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Ensuring Correctness |

Theorem 14.6 (Chinese Remainder Theorem; without proof)

Let my, ..., my > 1 be pairwise relatively prime (i.e., gcd(m;, m;) =1 for
1<i<j<k) Letem:=my-...-my, and let z1,...,zx € Z. Then there
is a unique z € Z such that

0<z<m and z=2z (modm;) forallie{l,... k}.

Application: for fixed initial (abstract) value of £1 and £2,
@ z = concrete final value of out
@ z; = abstract final value of out (mod my;)
@ k:=5 m =5 my:=7,m3:=9, myg =11, mg := 32
(thus m=5-7-9.11-32 = 110880 > 219)
@ Theorem 14.6 yields unique z < m with z = z; (mod m;)
e m> 2% — zis correct result of multiplication (see next slide)
@ thus termination implies correct result or overflow
Efficiency:
o Exhaustive testing: 216 .216 =232 — 4.29.10° runs
o Abstract interpretation: 2% (547 + 9+ 11 + 32) = 4.19 - 10° runs
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Ensuring Correctness ||

Proof (Correctness of abstraction).

To show: Vy1,y» € B 0,0’ € X : o(f1) = y1,0(£2) = yo,
{c,o) =T (|,0"),0'(ovE) =0 = o'(out) =y1-y>
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Ensuring Correctness ||

Proof (Correctness of abstraction).

To show: Vy1,y» € B®, 0,0’ € ¥ : 0(f1) = y1,0(£2) = y»,
{c,o) =T (|,0"),0'(ovE) =0 = o'(out) =y1-y>
Known: Vi € {1,...,5},y1,y> € B® abs, abs’ € Abs :
abs = {[f1 — y1,f2 — yZ#,out — r,ovE — b] |
re{0,...,m; — 1}, b € B}, (c, abs) =" (|, abs’)
= (Vp’ € abs’ : p'(ovE) =0 = p’(out) © (r1 '}/2#)#>

(where x# := x mod m;)
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Ensuring Correctness ||

Proof (Correctness of abstraction).

To show: Vy1,y» € B®, 0,0’ € ¥ : 0(f1) = y1,0(£2) = y»,

{c,o) =T (|,0"),0'(ovE) =0 = o'(out) =y1-y>
Known: Vi € {1,...,5},y1,y> € B® abs, abs’ € Abs :
abs = {[f1 — y1,f2 — yZ#,out — r,ovE — b] |
re{0,...,m; — 1}, b € B}, (c, abs) =" (|, abs’)
= (Vp’ € abs’ : p'(ovE) =0 = p'(out) @ (n '}/2#)#>
(where x# := x mod m;)
Proof: @ Let yi,y» € B, o(£f1) = y1, 0(£2) = yo, (c,0) =T (|, o),
o'(ovE) =0, and z := (y1 - yo)* for i € {1,...,5}
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Ensuring Correctness ||

Proof (Correctness of abstraction).

To show: Vy1,y» € B 0,0’ € X : o(f1) = y1,0(£2) = yo,
{c,o) =T (|,0"),0'(ovE) =0 = o'(out) =y1-y>
Known: Vi € {1,...,5},y1,y> € B® abs, abs’ € Abs :
abs = {[f1 — y1,f2 — yZ#,out — r,ovE — b] |
re{0,...,m; — 1}, b € B}, (c, abs) =" (|, abs’)
= (Vp’ € abs’ : p'(ovE) =0 = p'(out) @ (n '}/2#)#>
(where x* := x mod m;)
Proof: @ Let yi,y» € B, o(£f1) = y1, 0(£2) = yo, (c,0) =T (|, o),
o'(ovE) =0, and z := (y1 - yo)* for i € {1,...,5}
@ Theorem 14.6 yields unique z < m such that

z =2z (mod m;) forall i € {1,...,5}
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Ensuring Correctness ||

Proof (Correctness of abstraction).

To show: Vy1,y» € B®, 0,0’ € ¥ : 0(f1) = y1,0(£2) = y»,
{c,o) =T (|,0"),0'(ovE) =0 = o'(out) =y1-y>
Known: Vi € {1,...,5},y1,y> € B® abs, abs’ € Abs :
abs = {[f1 — y1,f2 — yZ#,out — r,ovE — b] |
re{0,...,m; — 1}, b € B}, (c, abs) =" (|, abs’)
= | Vp' € abs’: p'(ovE) =0 = p'(out) @ (n '}/2#)#>
(where x* := x mod m;)
Proof: @ Let yi,y» € B, o(£f1) = y1, 0(£2) = yo, (c,0) =T (|, o),
o'(ovE) =0, and z := (y1 - yo)* for i € {1,...,5}
@ Theorem 14.6 yields unique z < m such that
z =2z (mod m;) forall i € {1,...,5}
@ On the other hand, correctness of modulo abstraction implies
p'(ovf) =0 and
(o' (out))# = p/(out) (correctness of abstraction)
= (-t ()
= (y1-y2)* (Lemma 14.4)
— o'(out)=z=y1-y N
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