Static Program Analysis

Lecture 12: Abstract Interpretation Il
(Safe Approximation of Functions and Relations)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

@ Recap: Foundations of Abstract Interpretation

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 12.2

Galois Connections |

Definition (Galois connection)

Let (L,C;,) and (M, Cy) be complete lattices. A pair
(a,) of monotonic functions

a:L—-M and v: M= L
is called a Galois connection if
VielL:1Cpy(a(l)) and ¥Yme M: a(y(m)) Ty m

Evariste Galois
(1811-1832)

v

Interpretation:

@ L = {sets of concrete values}, M = {sets of abstract values}
« = abstraction function, v = concretization function
I T y(e(l)): « yields over-approximation
a(y(m)) Ep m: no loss of precision by abstraction after
concretization
e Usually: / # ~(a(l)), a(y(m)) =m

Static Program Analysis Winter Semester 2014/15 12.3

Properties of Galois Connections

Let (cv,7y) be a Galois connection with o : L — M and v : M — L, and let
lel,meM,L'CL M CM.

Q o) Eym <= ICLy(m)
© 7 is uniquely determined by o as follows:
y(m) = [{ € L|a(l) Em m}
© « is uniquely determined by ~y as follows:
a(l) = [ime M| 1L A(m)}
Q « is completely distributive: o |L') = | [{a(/) |/ € L'}
© ~ is completely multiplicative: v([TM') =[{y(m) | me M’}

on the board O
RWNTH Static Program Analysis Winter Semester 2014/15 12.4

© Recap: Concrete Semantics of WHILE Programs

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 12.5

Evaluation of Expressions

Definition (Evaluation function)

Let o € X be a state.
Q val, : AExp — Z : a — val,(a)
yields the value of a in state o

@ val, : BExp — B : b — val,(b)
yields the value of b in state o

Let o(x) =1 and o(y) = 2.
Q val,(2 x x +y)=4
Q val,(—(x + 1 > y))=true

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 12.6

Execution of Statements |

Definition (Execution relation for statements)

If c € Cmd and o € ¥, then (c, o) is called a configuration. The
execution relation

— C (Cmd x X)) x ((Cmd U {l]}) x X)
is defined by the following rules:
(skip)

(skip,0) — (},0)

(asgn) (x :=a,0) = (},0[x — val,(a)])

(c1,0) = (cf,0") cf # 4

(c1;¢2,0) = {c1;¢2,0")

{c1,0) = (J,0")

<C1;C2, U> — <C2, (TI>

(seql)

(seq2)

RWNTH Static Program Analysis Winter Semester 2014/15 12.7

Execution of Statements Il

Definition (Execution relation for statements; continued)

val,(b) = true
(if b then ¢ else ¢, 0) — (c1,0)

(if1)

val,(b) = false

if2
(i2) (if b then ¢ else ¢,0) — (c2,0)

val,(b) = true
(while b do c¢,0) — (c;while b do c,0)

(wh1)

val,(b) = false
(while b do c,0) — ({,0)

(wh2)

Remark: | indicates successful termination of the program

RWNTH HE Static Program Analysis Winter Semester 2014/15 12.8

e Execution Relation for WHILE Statements

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 12.9

An Execution Example

Example 12.1

@ c:=y :=1; while—~(x=1)doy := y*x;x := x-1
—_—— e

b Cc1 (&)

<
e Claim: (c,0) =% (|,016) for every o € ¥ with o(x) =3
o Notation: ¢;;j means o(x) =i, o(y) =

@ Derivation: on the board

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 12.10

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever
c€ Cmd, o € X and k1,k2 € (Cmd U {|}) X X such that (c,0) — K1
and (c,0) — kp, then K1 = ky.

omitted

More on formal semantics of programming languages:
Semantics and Verification of Software in forthcoming summer semester

Static Program Analysis Winter Semester 2014/15 12.11

e Safe Approximation of Functions

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 12.12

Safe Approximation of Functions |

Definition 12.3 (Safe approximation)

Let («,) be a Galois connection with av: L — M and v : M — L, and let
f:L"— Land f#* : M" — M be functions of rank n € N. Then f# is
called a safe approximation of f if, whenever my,...,m, € M,

O‘(f(fy(ml)a 000 77(mn))) Cwm f#(mb 0o00g mn)'
Moreover it is called most precise safe approximation if the reverse
inclusion is also true.

Abstract Concrete
i — ()
L7 L f

FE(m) 2 a(f(y(m)) «— F(y(r)

o Interpretation: the abstraction f# of f covers all concrete results
o Note: monotonicity of f and/or f# is not required (but usually
given; see Lemma 12.5)

RWTHAACHEN Static Program Analysis Winter Semester 2014 /15 12.13

Safe Approximation of Functions Il

Reminder: a(f(y(m1),...,v(mn))) Cp F7(my, ..., mp)

Example 12.4

© Parity abstraction (cf. Example 11.2): most precise approximations
o n=0: 1# = {odd}
o n=1. —#(P)= P, (~1)#({even}) = {odd}
o n=2: {even} +7 {odd} = {odd}, {even} -# {odd} = {even}

@ Sign abstraction (cf. Example 11.3): most precise approximations
e n=0: 1% = {—i—}

o n=1 —#({+}) = {-}, (-D)*({+}) = {+,0}
o n=2: {+}+# {+} = {+}
{+} +#{-} = {+,—,0}
{+} 7 {-}={-}
© Interval abstraction (cf. Example 11.4): most precise approximations

o n=0: z# = [z, 2]
o n=1 —#([z2,2]) = [-2,-z] (-1)*([z,2]) = [z — 1,2 — 1]
o n=2: [y, o] +7 [z1,22] = [y1 + 21,2 + 2]

[}/1,)/2] —# [21722] = [)’1 — 22,2 — 21]

RWNTH Static Program Analysis Winter Semester 2014/15 12.14

Safe Approximation of Functions Il

Iff:L" — L and f# : M" — M are monotonic, then f# is a safe
approximation of f iff, for all I,... I, €L,

af(h,. .. 1)) Em £ (ahy), ..., a(lh)).

on the board] \

Static Program Analysis Winter Semester 2014/15 12.15

© Safe Approximation of Execution Relations

RWIHAACHEN Static Program Analysis Winter Semester 2014/15 12.16

Safe Approximation of Execution Relation |

@ Reminder: concrete semantics of WHILE
o states ¥ := {0 | 0 : Var — Z} (Definition 11.6)
o execution relation — C (Cmd x £) x ((Cmd U {]}) x X)
(Definition 11.9)

@ Yields concrete domain L := 2> and concrete transition function:

Definition 12.6 (Concrete transition function)
The concrete transition function of WHILE is defined by the family of
functions
nexte ¢ : PE s DT
where ¢ € Cmd, ¢’ € Cmd U {]} and, for every S C ¥,
nextc (S):={oc' €X|Jo € S: (c,0) = (', ")}

Static Program Analysis Winter Semester 2014/15 12.17

Safe Approximation of Execution Relation Il

Remarks: next satisfies the following properties
o "Determinism” (cf. Theorem 12.2):

o forallce Cmd, ¢/ € Cmd U {l} and 0 € ¥: |nextc o ({o})] <1
e for all c € Cmd and o € ¥ there exists exactly one ¢’ € Cmd U {|}
such that |next. o ({o})| # 0
@ When is next. o(S) = (07 Possibilities:
Q S=10
@ (' not a possible successor statement of c, e.g.,
e c=(x :=0)
o ¢’ =skip
© ¢’ unreachable forall o € S, e.g.,
@ c=(if x = 0 then x := 1 else skip)
o ' = skip
@ o(x)=0foreacho €S

RWTHAACHEN Static Program Analysis Winter Semester 2014/15 12.18

Safe Approximation of Execution Relation Ill

e Reminder: abstraction determined by Galois connection («,) with
a:L—-Mandy: M — L
o here: L:=2% M not fixed (usually M = Var — ... or M = 2‘/‘"_’“')
e write Abs in place of M
o thus o : 2% — Abs and 7 : Abs — 2%

@ Yields abstract semantics:
Definition 12.7 (Abstract semantics of WHILE)

Given a : 2% — Abs, an abstract semantics is defined by a family of
functions

next? , : Abs — Abs
where ¢ € Cmd, ¢’ € Cmd U {]}, and each nextc#c, is a safe
approximation of next. ., i.e.,
a(nextc or(y(abs))) Cabs nextféc,(abs)

for every abs € Abs.
Notation: (c, abs) = (c’, abs’) for nextc#’c,(abS) = abs’.

RWTHAACHE Static Program Analysis Winter Semester 2014/15 12.19

Safe Approximation of Execution Relation IV

Example 12.8 (Parity abstraction (cf. Example 11.2))
Abs = o Var—{even,odd}

Var = {n}

Notation: [n+— p| € abs € Abs for p € {even, odd}
Some abstract (non-)transitions:

(n :=3*xn+ 1{

= (f
(n:=2x*n+ 1{

= ({
(while —(n=1) do c¢,{

= ({
(while —(n=1) do c,{

= (c; while —(n=1) do c¢,{
(while —(n=1) do c,{

<\I/7{
(while —(n=1) do c,{

= (c; while —(n=1) do c.{

n — odd]})
n — even|})

n — even|, [n — odd]})
n — odd]}

)
n — odd]})
n — odd]})
n — odd]})
n — odd]})

n — even|})
n — even|})
)

n — even|}
n +— even|})

Static Program Analysis

Winter Semester 2014/15

12.20

	Recap: Foundations of Abstract Interpretation
	Recap: Concrete Semantics of WHILE Programs
	Execution Relation for WHILE Statements
	Safe Approximation of Functions
	Safe Approximation of Execution Relations

