
Static Program Analysis
Lecture 12: Abstract Interpretation II

(Safe Approximation of Functions and Relations)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Outline

1 Recap: Foundations of Abstract Interpretation

2 Recap: Concrete Semantics of WHILE Programs

3 Execution Relation for WHILE Statements

4 Safe Approximation of Functions

5 Safe Approximation of Execution Relations

Static Program Analysis Winter Semester 2014/15 12.2

Galois Connections I

Definition (Galois connection)

Let (L,vL) and (M,vM) be complete lattices. A pair
(α, γ) of monotonic functions

α : L→ M and γ : M → L

is called a Galois connection if

∀l ∈ L : l vL γ(α(l)) and ∀m ∈ M : α(γ(m)) vM m
Evariste Galois
(1811–1832)

Interpretation:

L = {sets of concrete values}, M = {sets of abstract values}
α = abstraction function, γ = concretization function
l vL γ(α(l)): α yields over-approximation
α(γ(m)) vM m: no loss of precision by abstraction after
concretization
Usually: l 6= γ(α(l)), α(γ(m)) = m

Static Program Analysis Winter Semester 2014/15 12.3

Properties of Galois Connections

Lemma

Let (α, γ) be a Galois connection with α : L→ M and γ : M → L, and let
l ∈ L, m ∈ M, L′ ⊆ L, M ′ ⊆ M.

1 α(l) vM m ⇐⇒ l vL γ(m)

2 γ is uniquely determined by α as follows:

γ(m) =
⊔
{l ∈ L | α(l) vM m}

3 α is uniquely determined by γ as follows:

α(l) =
l
{m ∈ M | l vL γ(m)}

4 α is completely distributive: α(
⊔
L′) =

⊔
{α(l) | l ∈ L′}

5 γ is completely multiplicative: γ(
d

M ′) =
d
{γ(m) | m ∈ M ′}

Proof.

on the board

Static Program Analysis Winter Semester 2014/15 12.4

Outline

1 Recap: Foundations of Abstract Interpretation

2 Recap: Concrete Semantics of WHILE Programs

3 Execution Relation for WHILE Statements

4 Safe Approximation of Functions

5 Safe Approximation of Execution Relations

Static Program Analysis Winter Semester 2014/15 12.5

Evaluation of Expressions

Definition (Evaluation function)

Let σ ∈ Σ be a state.

1 valσ : AExp → Z : a→ valσ(a)
yields the value of a in state σ

2 valσ : BExp → B : b → valσ(b)
yields the value of b in state σ

Example

Let σ(x) = 1 and σ(y) = 2.

1 valσ(2 * x + y) = 4

2 valσ(¬(x + 1 > y)) = true

Static Program Analysis Winter Semester 2014/15 12.6

Execution of Statements I

Definition (Execution relation for statements)

If c ∈ Cmd and σ ∈ Σ, then 〈c , σ〉 is called a configuration. The
execution relation

→ ⊆ (Cmd × Σ)× ((Cmd ∪ {↓})× Σ)

is defined by the following rules:

(skip)
〈skip, σ〉 → 〈↓, σ〉

(asgn)
〈x := a, σ〉 → 〈↓, σ[x 7→ valσ(a)]〉

(seq1)
〈c1, σ〉 → 〈c ′1, σ′〉 c ′1 6= ↓
〈c1;c2, σ〉 → 〈c ′1;c2, σ

′〉

(seq2)
〈c1, σ〉 → 〈↓, σ′〉
〈c1;c2, σ〉 → 〈c2, σ

′〉

Static Program Analysis Winter Semester 2014/15 12.7

Execution of Statements II

Definition (Execution relation for statements; continued)

(if1)
valσ(b) = true

〈if b then c1 else c2, σ〉 → 〈c1, σ〉

(if2)
valσ(b) = false

〈if b then c1 else c2, σ〉 → 〈c2, σ〉

(wh1)
valσ(b) = true

〈while b do c , σ〉 → 〈c;while b do c, σ〉

(wh2)
valσ(b) = false

〈while b do c , σ〉 → 〈↓, σ〉

Remark: ↓ indicates successful termination of the program

Static Program Analysis Winter Semester 2014/15 12.8

Outline

1 Recap: Foundations of Abstract Interpretation

2 Recap: Concrete Semantics of WHILE Programs

3 Execution Relation for WHILE Statements

4 Safe Approximation of Functions

5 Safe Approximation of Execution Relations

Static Program Analysis Winter Semester 2014/15 12.9

An Execution Example

Example 12.1

c := y := 1; while¬(x=1)︸ ︷︷ ︸
b

do y := y*x︸ ︷︷ ︸
c1

; x := x-1︸ ︷︷ ︸
c2︸ ︷︷ ︸

c0

Claim: 〈c , σ〉 →+ 〈↓, σ1,6〉 for every σ ∈ Σ with σ(x) = 3

Notation: σi ,j means σ(x) = i , σ(y) = j

Derivation: on the board

Static Program Analysis Winter Semester 2014/15 12.10

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem 12.2

The execution relation for statements is deterministic, i.e., whenever
c ∈ Cmd, σ ∈ Σ and κ1, κ2 ∈ (Cmd ∪ {↓})× Σ such that 〈c , σ〉 → κ1

and 〈c , σ〉 → κ2, then κ1 = κ2.

Proof.

omitted

More on formal semantics of programming languages:
Semantics and Verification of Software in forthcoming summer semester

Static Program Analysis Winter Semester 2014/15 12.11

Outline

1 Recap: Foundations of Abstract Interpretation

2 Recap: Concrete Semantics of WHILE Programs

3 Execution Relation for WHILE Statements

4 Safe Approximation of Functions

5 Safe Approximation of Execution Relations

Static Program Analysis Winter Semester 2014/15 12.12

Safe Approximation of Functions I

Definition 12.3 (Safe approximation)

Let (α, γ) be a Galois connection with α : L→ M and γ : M → L, and let
f : Ln → L and f # : Mn → M be functions of rank n ∈ N. Then f # is
called a safe approximation of f if, whenever m1, . . . ,mn ∈ M,

α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn).

Moreover it is called most precise safe approximation if the reverse
inclusion is also true.

Abstract Concrete

~m
γ−→ γ(~m)

↓ f # ↓ f
f #(~m) w α(f (γ(~m)))

α←− f (γ(~m))

Interpretation: the abstraction f # of f covers all concrete results
Note: monotonicity of f and/or f # is not required (but usually
given; see Lemma 12.5)

Static Program Analysis Winter Semester 2014/15 12.13

Safe Approximation of Functions II

Reminder: α(f (γ(m1), . . . , γ(mn))) vM f #(m1, . . . ,mn)

Example 12.4

1 Parity abstraction (cf. Example 11.2): most precise approximations

n = 0: 1# = {odd}
n = 1: −#(P) = P, (−1)#({even}) = {odd}
n = 2: {even}+# {odd} = {odd}, {even} ·# {odd} = {even}

2 Sign abstraction (cf. Example 11.3): most precise approximations

n = 0: 1# = {+}
n = 1: −#({+}) = {−}, (−1)#({+}) = {+, 0}
n = 2: {+}+# {+} = {+}

{+}+# {−} = {+,−, 0}
{+} ·# {−} = {−}

3 Interval abstraction (cf. Example 11.4): most precise approximations

n = 0: z# = [z , z]
n = 1: −#([z1, z2]) = [−z2,−z1], (−1)#([z1, z2]) = [z1 − 1, z2 − 1]
n = 2: [y1, y2] +# [z1, z2] = [y1 + z1, y2 + z2]

[y1, y2]−# [z1, z2] = [y1 − z2, y2 − z1]

Static Program Analysis Winter Semester 2014/15 12.14

Safe Approximation of Functions III

Lemma 12.5

If f : Ln → L and f # : Mn → M are monotonic, then f # is a safe
approximation of f iff, for all l1, . . . , ln ∈ L,

α(f (l1, . . . , ln)) vM f #(α(l1), . . . , α(ln)).

Proof.

on the board

Static Program Analysis Winter Semester 2014/15 12.15

Outline

1 Recap: Foundations of Abstract Interpretation

2 Recap: Concrete Semantics of WHILE Programs

3 Execution Relation for WHILE Statements

4 Safe Approximation of Functions

5 Safe Approximation of Execution Relations

Static Program Analysis Winter Semester 2014/15 12.16

Safe Approximation of Execution Relation I

Reminder: concrete semantics of WHILE

states Σ := {σ | σ : Var → Z} (Definition 11.6)
execution relation → ⊆ (Cmd × Σ)× ((Cmd ∪ {↓})× Σ)
(Definition 11.9)

Yields concrete domain L := 2Σ and concrete transition function:

Definition 12.6 (Concrete transition function)

The concrete transition function of WHILE is defined by the family of
functions

nextc,c ′ : 2Σ → 2Σ

where c ∈ Cmd , c ′ ∈ Cmd ∪ {↓} and, for every S ⊆ Σ,

nextc,c ′(S) := {σ′ ∈ Σ | ∃σ ∈ S : 〈c , σ〉 → 〈c ′, σ′〉}.

Static Program Analysis Winter Semester 2014/15 12.17

Safe Approximation of Execution Relation II

Remarks: next satisfies the following properties

“Determinism” (cf. Theorem 12.2):

for all c ∈ Cmd , c ′ ∈ Cmd ∪ {↓} and σ ∈ Σ: |nextc,c′({σ})| ≤ 1
for all c ∈ Cmd and σ ∈ Σ there exists exactly one c ′ ∈ Cmd ∪ {↓}
such that |nextc,c′({σ})| 6= ∅

When is nextc,c ′(S) = ∅? Possibilities:
1 S = ∅
2 c ′ not a possible successor statement of c , e.g.,

c = (x := 0)
c ′ = skip

3 c ′ unreachable for all σ ∈ S , e.g.,

c = (if x = 0 then x := 1 else skip)
c ′ = skip

σ(x) = 0 for each σ ∈ S

Static Program Analysis Winter Semester 2014/15 12.18

Safe Approximation of Execution Relation III

Reminder: abstraction determined by Galois connection (α, γ) with
α : L→ M and γ : M → L

here: L := 2Σ, M not fixed (usually M = Var → . . . or M = 2Var→...)
write Abs in place of M
thus α : 2Σ → Abs and γ : Abs → 2Σ

Yields abstract semantics:

Definition 12.7 (Abstract semantics of WHILE)

Given α : 2Σ → Abs, an abstract semantics is defined by a family of
functions

next#
c,c ′ : Abs → Abs

where c ∈ Cmd , c ′ ∈ Cmd ∪ {↓}, and each next#
c,c ′ is a safe

approximation of nextc,c ′ , i.e.,

α(nextc,c ′(γ(abs))) vAbs next#
c,c ′(abs)

for every abs ∈ Abs.
Notation: 〈c , abs〉 ⇒ 〈c ′, abs ′〉 for next#

c,c ′(abs) = abs ′.

Static Program Analysis Winter Semester 2014/15 12.19

Safe Approximation of Execution Relation IV

Example 12.8 (Parity abstraction (cf. Example 11.2))

Abs = 2Var→{even,odd}

Var = {n}
Notation: [n 7→ p] ∈ abs ∈ Abs for p ∈ {even, odd}
Some abstract (non-)transitions:

〈n := 3 * n + 1,{[n 7→ odd]}〉
⇒ 〈↓,{[n 7→ even]}〉

〈n := 2 * n + 1,{[n 7→ even], [n 7→ odd]}〉
⇒ 〈↓,{[n 7→ odd]}〉

〈while ¬(n=1) do c ,{[n 7→ odd]}〉
⇒ 〈↓,{[n 7→ odd]}〉

〈while ¬(n=1) do c ,{[n 7→ odd]}〉
⇒ 〈c; while ¬(n=1) do c ,{[n 7→ odd]}〉

〈while ¬(n=1) do c ,{[n 7→ even]}〉
6⇒ 〈↓,{[n 7→ even]}〉

〈while ¬(n=1) do c ,{[n 7→ even]}〉
⇒ 〈c; while ¬(n=1) do c ,{[n 7→ even]}〉

Static Program Analysis Winter Semester 2014/15 12.20

	Recap: Foundations of Abstract Interpretation
	Recap: Concrete Semantics of WHILE Programs
	Execution Relation for WHILE Statements
	Safe Approximation of Functions
	Safe Approximation of Execution Relations

