Static Program Analysis

Lecture 12: Abstract Interpretation II (Safe Approximation of Functions and Relations)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

RWTHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

- 1 Recap: Foundations of Abstract Interpretation
- 2 Recap: Concrete Semantics of WHILE Programs
- 3 Execution Relation for WHILE Statements
- 4 Safe Approximation of Functions
- 5 Safe Approximation of Execution Relations

Galois Connections I

Definition (Galois connection)

Let (L, \sqsubseteq_L) and (M, \sqsubseteq_M) be complete lattices. A pair (α, γ) of monotonic functions

$$\alpha: L \to M$$
 and $\gamma: M \to L$

is called a Galois connection if

$$\forall I \in L : I \sqsubseteq_L \gamma(\alpha(I))$$
 and $\forall m \in M : \alpha(\gamma(m)) \sqsubseteq_M m$

Evariste Galois (1811–1832)

Interpretation:

- $L = \{ \text{sets of concrete values} \}$, $M = \{ \text{sets of abstract values} \}$
- \bullet $\alpha =$ abstraction function, $\gamma =$ concretization function
- $I \sqsubseteq_L \gamma(\alpha(I))$: α yields over-approximation
- $\alpha(\gamma(m)) \sqsubseteq_M m$: no loss of precision by abstraction after concretization
- Usually: $I \neq \gamma(\alpha(I)), \ \alpha(\gamma(m)) = m$

Properties of Galois Connections

Lemma

Let (α, γ) be a Galois connection with $\alpha : L \to M$ and $\gamma : M \to L$, and let $l \in L$, $m \in M$, $L' \subseteq L$, $M' \subseteq M$.

- **2** γ is uniquely determined by α as follows:

$$\gamma(m) = \bigsqcup \{ l \in L \mid \alpha(l) \sqsubseteq_M m \}$$

3 α is uniquely determined by γ as follows:

$$\alpha(I) = \bigcap \{ m \in M \mid I \sqsubseteq_L \gamma(m) \}$$

- **4** α is completely distributive: $\alpha(\bigsqcup L') = \bigsqcup \{\alpha(I) \mid I \in L'\}$
- **1** γ is completely multiplicative: $\gamma(\bigcap M') = \bigcap \{\gamma(m) \mid m \in M'\}$

Proof.

on the board

- Recap: Foundations of Abstract Interpretation
- 2 Recap: Concrete Semantics of WHILE Programs
- 3 Execution Relation for WHILE Statements
- 4 Safe Approximation of Functions
- 5 Safe Approximation of Execution Relations

Evaluation of Expressions

Definition (Evaluation function)

Let $\sigma \in \Sigma$ be a state.

- $val_{\sigma}: AExp \rightarrow \mathbb{Z}: a \rightarrow val_{\sigma}(a)$ yields the value of a in state σ
- 2 $val_{\sigma}: BExp \rightarrow \mathbb{B}: b \rightarrow val_{\sigma}(b)$ yields the value of b in state σ

Example

Let $\sigma(x) = 1$ and $\sigma(y) = 2$.

- **1** $val_{\sigma}(2 * x + y) = 4$
- 2 $val_{\sigma}(\neg(x + 1 > y)) = true$

Execution of Statements I

Definition (Execution relation for statements)

If $c \in \mathit{Cmd}$ and $\sigma \in \Sigma$, then $\langle c, \sigma \rangle$ is called a configuration. The execution relation

$$\rightarrow \ \subseteq \ (\textit{Cmd} \times \Sigma) \times ((\textit{Cmd} \cup \{\downarrow\}) \times \Sigma)$$

is defined by the following rules:

$$\begin{split} & (\mathsf{skip}) \overline{\langle \mathsf{skip}, \sigma \rangle} \to \langle \downarrow, \sigma \rangle \\ & (\mathsf{asgn}) \overline{\langle x := \mathsf{a}, \sigma \rangle} \to \langle \downarrow, \sigma [\mathsf{x} \mapsto \mathsf{val}_\sigma(\mathsf{a})] \rangle \\ & (\mathsf{seq1}) \frac{\langle c_1, \sigma \rangle}{\langle c_1; c_2, \sigma \rangle} \to \langle c_1', \sigma' \rangle \ c_1' \neq \downarrow \\ & (\mathsf{seq2}) \frac{\langle c_1, \sigma \rangle}{\langle c_1; c_2, \sigma \rangle} \to \langle \downarrow, \sigma' \rangle \\ & (\mathsf{seq2}) \frac{\langle c_1, \sigma \rangle}{\langle c_1; c_2, \sigma \rangle} \to \langle c_2, \sigma' \rangle \end{split}$$

Execution of Statements II

Definition (Execution relation for statements; continued)

$$\begin{aligned} & \textit{val}_{\sigma}(b) = \mathsf{true} \\ & \overline{\langle \mathsf{if} \; b \; \mathsf{then} \; c_1 \; \mathsf{else} \; c_2, \sigma \rangle \to \langle c_1, \sigma \rangle} \\ & \overline{\langle \mathsf{if} \; b \; \mathsf{then} \; c_1 \; \mathsf{else} \; c_2, \sigma \rangle \to \langle c_2, \sigma \rangle} \\ & \overline{\langle \mathsf{if} \; b \; \mathsf{then} \; c_1 \; \mathsf{else} \; c_2, \sigma \rangle \to \langle c_2, \sigma \rangle} \\ & \overline{\langle \mathsf{wh1} \rangle} \frac{ \mathit{val}_{\sigma}(b) = \mathsf{true} }{ \overline{\langle \mathsf{while} \; b \; \mathsf{do} \; c, \sigma \rangle \to \langle c; \mathsf{while} \; b \; \mathsf{do} \; c, \sigma \rangle} \\ & \overline{\langle \mathsf{wh2} \rangle} \frac{ \mathit{val}_{\sigma}(b) = \mathsf{false} }{ \overline{\langle \mathsf{while} \; b \; \mathsf{do} \; c, \sigma \rangle \to \langle \downarrow, \sigma \rangle} }$$

Remark: ↓ indicates successful termination of the program

- Recap: Foundations of Abstract Interpretation
- Recap: Concrete Semantics of WHILE Programs
- 3 Execution Relation for WHILE Statements
- 4 Safe Approximation of Functions
- 5 Safe Approximation of Execution Relations

An Execution Example

Example 12.1

•
$$c := y := 1$$
; while $\underbrace{\neg(x=1)}_{b} do \underbrace{y := y*x}_{c_1}$; $\underbrace{x := x-1}_{c_2}$

- Claim: $\langle c, \sigma \rangle \to^+ \langle \downarrow, \sigma_{1,6} \rangle$ for every $\sigma \in \Sigma$ with $\sigma(x) = 3$
- Notation: $\sigma_{i,j}$ means $\sigma(\mathbf{x}) = i$, $\sigma(\mathbf{y}) = j$
- Derivation: on the board

Determinism Property of Execution Relation

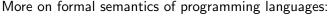
This operational semantics is well defined in the following sense:

Theorem 12.2

The execution relation for statements is deterministic, i.e., whenever $c \in Cmd$, $\sigma \in \Sigma$ and $\kappa_1, \kappa_2 \in (Cmd \cup \{\downarrow\}) \times \Sigma$ such that $\langle c, \sigma \rangle \to \kappa_1$ and $\langle c, \sigma \rangle \to \kappa_2$, then $\kappa_1 = \kappa_2$.

Proof.

omitted



Semantics and Verification of Software in forthcoming summer semester

- Recap: Foundations of Abstract Interpretation
- Recap: Concrete Semantics of WHILE Programs
- 3 Execution Relation for WHILE Statements
- 4 Safe Approximation of Functions
- 5 Safe Approximation of Execution Relations

Safe Approximation of Functions I

Definition 12.3 (Safe approximation)

Let (α, γ) be a Galois connection with $\alpha: L \to M$ and $\gamma: M \to L$, and let $f: L^n \to L$ and $f^\#: M^n \to M$ be functions of rank $n \in \mathbb{N}$. Then $f^\#$ is called a safe approximation of f if, whenever $m_1, \ldots, m_n \in M$,

$$\alpha(f(\gamma(m_1),\ldots,\gamma(m_n)))\sqsubseteq_M f^\#(m_1,\ldots,m_n).$$

Moreover it is called most precise safe approximation if the reverse inclusion is also true.

$\begin{array}{cccc} \textbf{Abstract} & \textbf{Concrete} \\ \vec{m} & \stackrel{\gamma}{\longrightarrow} & \gamma(\vec{m}) \\ \downarrow f^{\#} & & \downarrow f \\ f^{\#}(\vec{m}) \sqsupseteq \alpha(f(\gamma(\vec{m}))) & \stackrel{\alpha}{\longleftarrow} & f(\gamma(\vec{m})) \end{array}$

- Interpretation: the abstraction $f^{\#}$ of f covers all concrete results
- **Note:** monotonicity of f and/or $f^{\#}$ is *not* required (but usually given; see Lemma 12.5)

Safe Approximation of Functions II

Reminder: $\alpha(f(\gamma(m_1),\ldots,\gamma(m_n))) \sqsubseteq_M f^\#(m_1,\ldots,m_n)$

Example 12.4

- Parity abstraction (cf. Example 11.2): most precise approximations
 - n = 0: $1^\# = \{ odd \}$
 - n = 1: $-^{\#}(P) = P$, $(-1)^{\#}(\{\text{even}\}) = \{\text{odd}\}$
 - n = 2: {even} +# {odd} = {odd}, {even} ·# {odd} = {even}
- ② Sign abstraction (cf. Example 11.3): most precise approximations
 - n = 0: $1^\# = \{+\}$
 - n = 1: $-\#(\{+\}) = \{-\}, (-1)\#(\{+\}) = \{+, 0\}$
 - n = 2: $\{+\} + \# \{+\} = \{+\}$ $\{+\} + \# \{-\} = \{+, -, 0\}$ $\{+\} \cdot \# \{-\} = \{-\}$
- 11.4): most precise approximations
 - n = 0: $z^{\#} = [z, z]$
 - n = 1: $-\#([z_1, z_2]) = [-z_2, -z_1], (-1)\#([z_1, z_2]) = [z_1 1, z_2 1]$
 - n = 2: $[y_1, y_2] + \# [z_1, z_2] = [y_1 + z_1, y_2 + z_2]$ $[y_1, y_2] - \# [z_1, z_2] = [y_1 - z_2, y_2 - z_1]$

Safe Approximation of Functions III

Lemma 12.5

If $f:L^n\to L$ and $f^\#:M^n\to M$ are monotonic, then $f^\#$ is a safe approximation of f iff, for all $l_1,\ldots,l_n\in L$,

$$\alpha(f(I_1,\ldots,I_n))\sqsubseteq_M f^\#(\alpha(I_1),\ldots,\alpha(I_n)).$$

Proof.

on the board

- Recap: Foundations of Abstract Interpretation
- Recap: Concrete Semantics of WHILE Programs
- 3 Execution Relation for WHILE Statements
- 4 Safe Approximation of Functions
- 5 Safe Approximation of Execution Relations

Safe Approximation of Execution Relation I

- Reminder: concrete semantics of WHILE
 - states $\Sigma := \{ \sigma \mid \sigma : Var \rightarrow \mathbb{Z} \}$ (Definition 11.6)
 - execution relation $\rightarrow \subseteq (Cmd \times \Sigma) \times ((Cmd \cup \{\downarrow\}) \times \Sigma)$ (Definition 11.9)
- Yields concrete domain $L := 2^{\Sigma}$ and concrete transition function:

Definition 12.6 (Concrete transition function)

The concrete transition function of WHILE is defined by the family of functions

$$\mathsf{next}_{c,c'}: 2^{\Sigma} \to 2^{\Sigma}$$

where $c \in \mathit{Cmd}$, $c' \in \mathit{Cmd} \cup \{\downarrow\}$ and, for every $S \subseteq \Sigma$,

$$\mathsf{next}_{c,c'}(S) := \{ \sigma' \in \Sigma \mid \exists \sigma \in S : \langle c, \sigma \rangle \to \langle c', \sigma' \rangle \}.$$

Safe Approximation of Execution Relation II

Remarks: next satisfies the following properties

- "Determinism" (cf. Theorem 12.2):
 - for all $c \in Cmd$, $c' \in Cmd \cup \{\downarrow\}$ and $\sigma \in \Sigma$: $|\text{next}_{c,c'}(\{\sigma\})| \leq 1$
 - for all $c \in Cmd$ and $\sigma \in \Sigma$ there exists exactly one $c' \in Cmd \cup \{\downarrow\}$ such that $|\text{next}_{c,c'}(\{\sigma\})| \neq \emptyset$
- When is $\text{next}_{c,c'}(S) = \emptyset$? Possibilities:
 - **1** $S = \emptyset$
 - - c = (x := 0)
 - c' = skip
 - 3 c' unreachable for all $\sigma \in S$, e.g.,
 - c = (if x = 0 then x := 1 else skip)
 - c' = skip
 - $\sigma(x) = 0$ for each $\sigma \in S$

Safe Approximation of Execution Relation III

- **Reminder:** abstraction determined by Galois connection (α, γ) with $\alpha: L \to M$ and $\gamma: M \to L$
 - here: $L := 2^{\Sigma}$, M not fixed (usually $M = Var \rightarrow ...$ or $M = 2^{Var \rightarrow ...}$)
 - write *Abs* in place of *M*
 - thus $\alpha: 2^{\Sigma} \to Abs$ and $\gamma: Abs \to 2^{\Sigma}$
- Yields abstract semantics:

Definition 12.7 (Abstract semantics of WHILE)

Given $\alpha: 2^{\Sigma} \to Abs$, an abstract semantics is defined by a family of functions

$$\mathsf{next}^\#_{c,c'}: \mathsf{Abs} \to \mathsf{Abs}$$

where $c \in Cmd$, $c' \in Cmd \cup \{\downarrow\}$, and each $\operatorname{next}_{c,c'}^{\#}$ is a safe approximation of $\operatorname{next}_{c,c'}$, i.e.,

$$\alpha(\mathsf{next}_{c,c'}(\gamma(abs))) \sqsubseteq_{Abs} \mathsf{next}_{c,c'}^{\#}(abs)$$

for every $abs \in Abs$.

Notation: $\langle c, abs \rangle \Rightarrow \langle c', abs' \rangle$ for $\text{next}_{c,c'}^{\#}(abs) = abs'$.

Safe Approximation of Execution Relation IV

Example 12.8 (Parity abstraction (cf. Example 11.2))

- $Abs = 2^{Var \rightarrow \{\text{even}, \text{odd}\}}$
- $Var = \{n\}$
- Notation: $[n \mapsto p] \in abs \in Abs$ for $p \in \{even, odd\}$
- Some abstract (non-)transitions:

```
\langle n := 3 * n + 1, \{[n \mapsto odd]\} \rangle
                                                                 \langle \downarrow, \{[n \mapsto even]\} \rangle
\Rightarrow
                           \langle n := 2 * n + 1, \{[n \mapsto even], [n \mapsto odd]\} \rangle
                                                                 \langle \downarrow, \{[n \mapsto odd]\} \rangle
\Rightarrow
                 \langle \text{while } \neg (\text{n=1}) \text{ do } c, \{[\text{n} \mapsto \text{odd}]\} \rangle
                                                                  \langle \downarrow, \{[n \mapsto odd]\} \rangle
\Rightarrow
                 \langle \text{while } \neg (\text{n=1}) \text{ do } c, \{[\text{n} \mapsto \text{odd}]\} \rangle
\Rightarrow \langle c; \text{ while } \neg (n=1) \text{ do } c, \{[n \mapsto odd]\} \rangle
                 \langle \text{while } \neg (\text{n=1}) \text{ do } c, \{[\text{n} \mapsto \text{even}]\} \rangle
\Rightarrow
                                                                 \langle \downarrow, \{[n \mapsto \text{even}]\} \rangle
                 \langle \text{while } \neg (\text{n=1}) \text{ do } c, \{[\text{n} \mapsto \text{even}]\} \rangle
\Rightarrow \langle c; \text{ while } \neg (n=1) \text{ do } c, \{[n \mapsto \text{even}]\} \rangle
```