Static Program Analysis Lecture 11: Abstract Interpretation I (Theoretical Foundations)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

1 Introduction to Abstract Interpretation

2 Theoretical Foundations of Abstract Interpretation

3 Excursus: Concrete Semantics of WHILE Programs

Abstract Interpretation I

- **Summary:** a theory of sound approximation of the semantics of programs
- **Basic idea:** execution of program on abstract values (similar to type-level JVM bytecode interpreter)
- Example: parity (even/odd) rather than concrete numbers
- **Procedure:** run program on finite set of abstract values that cover all concrete inputs using abstract operations that cover all concrete outputs
 - \implies soundness of approach
- Preciseness of information again characterized by partial order

Abstract Interpretation II

Advantages:

- Abstract interpretation covers conditional branches (if/while) without further extension
- Granularity of abstract domain influences precision and complexity of analysis (mutual tradeoff)
- Numerous variants for different kinds of programs (functional, concurrent, ...)
- Soundness is guaranteed if abstract operations are determined according to theory

Disadvantages:

- Complexity generally higher than with dataflow analysis
- Automatic derivation of abstract operations can be difficult

- Interventional foundations (Galois connections)
- (Concrete &) Abstract semantics of WHILE programs
- Outomatic derivation of abstract semantics
- Application: verification of 16-bit multiplication
- Predicate abstraction
- O CEGAR (CounterExample-Guided Abstraction Refinement)

Introduction to Abstract Interpretation

2 Theoretical Foundations of Abstract Interpretation

3 Excursus: Concrete Semantics of WHILE Programs

Definition 11.1 (Galois connection)

Let (L, \sqsubseteq_L) and (M, \sqsubseteq_M) be complete lattices. A pair (α, γ) of monotonic functions

 $\alpha: L \to M$ and $\gamma: M \to L$

is called a Galois connection if

 $\forall l \in L : l \sqsubseteq_L \gamma(\alpha(l)) \text{ and } \forall m \in M : \alpha(\gamma(m)) \sqsubseteq_M m$

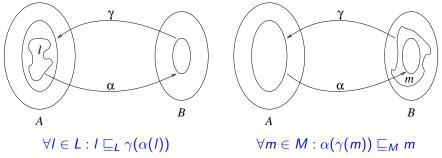
Evariste Galois (1811–1832)

Interpretation:

- $L = \{ \text{sets of concrete values} \}, M = \{ \text{sets of abstract values} \}$
- $\alpha = abstraction$ function, $\gamma = concretization$ function
- $I \sqsubseteq_L \gamma(\alpha(I))$: α yields over-approximation
- α(γ(m)) ⊑_M m: no loss of precision by abstraction after concretization
- Usually: $l \neq \gamma(\alpha(l)), \ \alpha(\gamma(m)) = m$

Galois Connections II

For $A = \{\text{concrete values}\}, B = \{\text{abstract values}\}, L = 2^A, M = 2^B$:



(α yields over-approximation)

(no loss of precision by abstraction after concretization)

Galois Connections III

Example 11.2 (Parity abstraction)

Concrete domain: $L = (2^{\mathbb{Z}}, \subseteq)$ Abstract domain: $M = (2^{\{\text{even}, \text{odd}\}}, \subseteq)$ $\alpha: 2^{\mathbb{Z}} \to 2^{\{\text{even}, \text{odd}\}}$ $\alpha(Z) := \begin{cases} \emptyset & \text{if } Z = \emptyset \\ \{\text{even}\} & \text{if } Z \subseteq \mathbb{Z}_{\text{even}} \\ \{\text{odd}\} & \text{if } Z \subseteq \mathbb{Z}_{\text{odd}} \end{cases}$ otherwise $\gamma: 2^{\{\text{even}, \text{odd}\}} \rightarrow 2^{\mathbb{Z}}$ $\gamma(P) := \bigcup_{p \in P} \mathbb{Z}_p$ where $\mathbb{Z}_{even} := \{ \dots, -2, 0, 2, \dots \}$ $\mathbb{Z}_{\mathsf{odd}} := \{\ldots, -3, -1, 1, 3, \ldots\}$ yields a Galois connection. For example, • $\gamma(\alpha(\{1,3,7\})) = \gamma(\{\mathsf{odd}\}) = \{\ldots, -3, -1, 1, 3, \ldots\} \supseteq \{1,3,7\}$ • $\alpha(\gamma(\{\text{even}\})) = \alpha(\{\ldots, -2, 0, 2, \ldots\}) = \{\text{even}\}$

Galois Connections IV

Example 11.3 (Sign abstraction)

Concrete domain: $L = (2^{\mathbb{Z}}, \subseteq)$ Abstract domain: $M = (2^{\{+,-,0\}}, \subseteq)$ $\alpha \cdot 2^{\mathbb{Z}} \rightarrow 2^{\{+,-,0\}}$ $\alpha(Z) := \{\operatorname{sgn}(z) \mid z \in Z\}$ $\gamma: 2^{\{+,-,0\}} \rightarrow 2^{\mathbb{Z}}$ $\gamma(S) := \bigcup_{c \in S} \mathbb{Z}_{S}$ where $\operatorname{sgn}(z) := \begin{cases} + & \text{if } z > 0 \\ - & \text{if } z < 0 \\ 0 & \text{otherwise} \end{cases}$ $\mathbb{Z}_{+} := \{1, 2, 3, \ldots\}$ $\mathbb{Z}_{-} := \{-1, -2, -3, \ldots\}$ $\mathbb{Z}_0 := \{0\}$

yields a Galois connection. For example,

• $\gamma(\alpha(\{0,1,3\})) = \gamma(\{+,0\}) = \{0,1,2,3,\ldots\} \supseteq \{0,1,3\}$ • $\alpha(\gamma(\{+,-\})) = \alpha(\mathbb{Z} \setminus \{0\}) = \{+,-\}$

RWTHAACHEN

Example 11.4 (Interval abstraction (cf. Slide 7.17))

Concrete domain: $L = (2^{\mathbb{Z}}, \subseteq)$ Abstract domain: $M = (Int, \subseteq)$ (where $Int = (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\}) \cup \{\emptyset\}$) $\alpha : 2^{\mathbb{Z}} \to Int$ $\alpha(Z) := \begin{cases} \emptyset & \text{if } Z = \emptyset \\ [\square Z, \bigsqcup Z] & \text{otherwise} \end{cases}$ $\gamma : Int \to 2^{\mathbb{Z}}$ $\gamma(J) := \begin{cases} \emptyset & \text{if } J = \emptyset \\ \{z \in \mathbb{Z} \mid z_1 \le z \le z_2\} & \text{if } J = [z_1, z_2] \end{cases}$

yields a Galois connection. For example,

• $\gamma(\alpha(\{1,3,5,\ldots\})) = \gamma([1,+\infty]) = \{1,2,3,4,5,\ldots\} \supseteq \{1,3,5,\ldots\}$

• $\alpha(\gamma([-1,1])) = \alpha(\{-1,0,1\}) = [-1,1]$

Properties of Galois Connections

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha : L \to M$ and $\gamma : M \to L$, and let $I \in L$, $m \in M$, $L' \subset L$, $M' \subset M$.

- **2** γ is uniquely determined by α as follows:

 $\gamma(m) = \left| \{ l \in L \mid \alpha(l) \sqsubseteq_M m \} \right|$

- **(a)** α is uniquely determined by γ as follows: $\alpha(I) = | \{ m \in M \mid I \sqsubseteq_L \gamma(m) \}$
- α is completely distributive: $\alpha(||L') = ||\{\alpha(I) \mid I \in L'\}$
- γ is completely multiplicative: $\gamma(\prod M') = \prod \{\gamma(m) \mid m \in M'\}$

Introduction to Abstract Interpretation

2 Theoretical Foundations of Abstract Interpretation

3 Excursus: Concrete Semantics of WHILE Programs

The syntax of WHILE Programs is defined by the following context-free grammar (cf. Definition 1.3):

$$\begin{array}{l} a ::= z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 \ast a_2 \in AExp \\ b ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \land b_2 \mid b_1 \lor b_2 \in BExp \\ c ::= skip \mid x := a \mid c_1; c_2 \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{while } b \text{ do } c \in Cmd \end{array}$$

- Meaning of expression = value (in the usual sense)
- Depends on the values of the variables in the expression

Definition 11.6 (Program state)

A (program) state is an element of the set

 $\Sigma := \{ \sigma \mid \sigma : Var \to \mathbb{Z} \},\$

called the state space.

Thus $\sigma(x)$ denotes the value of $x \in Var$ in state $\sigma \in \Sigma$.

Definition 11.7 (Evaluation function)

Let $\sigma \in \Sigma$ be a state.

- val_σ : AExp → Z : a → val_σ(a) yields the value of a in state σ
- ② val_σ: BExp → B: b → val_σ(b) yields the value of b in state σ

Example 11.8

Let $\sigma(\mathbf{x}) = 1$ and $\sigma(\mathbf{y}) = 2$.

$$val_{\sigma}(2 * x + y) = 4$$

$$al_{\sigma}(\neg(x + 1 > y)) = true$$

- Definition employs derivation rules of the form
 Name Premise(s) Conclusion
 - meaning: if every premise is fulfilled, then conclusion can be drawn
 - a rule with no premises is called an axiom
- Iterated application yields complete derivation tree
 - initial program and state at root
 - premises as children of inner nodes
 - axioms at leafs

Definition 11.9 (Execution relation for statements)

If $c \in Cmd$ and $\sigma \in \Sigma$, then $\langle c, \sigma \rangle$ is called a configuration. The execution relation

 $\rightarrow \subseteq \ (\textit{Cmd} \times \Sigma) \times ((\textit{Cmd} \cup \{\downarrow\}) \times \Sigma)$

is defined by the following rules:

(a

$$(\text{skip}) \frac{\langle \text{skip}, \sigma \rangle \to \langle \downarrow, \sigma \rangle}{\langle \text{skip}, \sigma \rangle \to \langle \downarrow, \sigma \rangle}$$

$$(\text{sgn}) \frac{\langle x := a, \sigma \rangle \to \langle \downarrow, \sigma [x \mapsto val_{\sigma}(a)] \rangle}{\langle c_{1}, \sigma \rangle \to \langle c_{1}', \sigma' \rangle \ c_{1}' \neq \downarrow}$$

$$(\text{seq1}) \frac{\langle c_{1}, \sigma \rangle \to \langle c_{1}', \sigma' \rangle \ c_{1}' \neq \downarrow}{\langle c_{1}; c_{2}, \sigma \rangle \to \langle c_{1}'; c_{2}, \sigma' \rangle}$$

$$(\text{seq2}) \frac{\langle c_{1}, \sigma \rangle \to \langle \downarrow, \sigma' \rangle}{\langle c_{1}; c_{2}, \sigma \rangle \to \langle c_{2}, \sigma' \rangle}$$

Execution of Statements II

Definition 11.9 (Execution relation for statements; continued)

$$\begin{split} & (\text{if1}) \frac{val_{\sigma}(b) = \text{true}}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \to \langle c_1, \sigma \rangle} \\ & (\text{if2}) \frac{val_{\sigma}(b) = \text{false}}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \to \langle c_2, \sigma \rangle} \\ & (\text{wh1}) \frac{val_{\sigma}(b) = \text{true}}{\langle \text{while } b \text{ do } c, \sigma \rangle \to \langle c; \text{while } b \text{ do } c, \sigma \rangle} \\ & (\text{wh2}) \frac{val_{\sigma}(b) = \text{false}}{\langle \text{while } b \text{ do } c, \sigma \rangle \to \langle \downarrow, \sigma \rangle} \end{split}$$

Remark: \downarrow indicates successful termination of the program

RNTHAACHEN

Static Program Analysis

An Execution Example

Example 11.10

•
$$c := y := 1$$
; while $\neg (x=1)$ do $y := y*x$; $x := x-1$
• Claim: $\langle c, \sigma \rangle \rightarrow^+ \langle \downarrow, \sigma_{1,6} \rangle$ for every $\sigma \in \Sigma$ with $\sigma(x) = 3$

- Notation: $\sigma_{i,j}$ means $\sigma(\mathbf{x}) = i$, $\sigma(\mathbf{y}) = j$
- Derivation: on the board

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem 11.11

The execution relation for statements is deterministic, i.e., whenever $c \in Cmd$, $\sigma \in \Sigma$ and $\kappa_1, \kappa_2 \in (Cmd \cup \{\downarrow\}) \times \Sigma$ such that $\langle c, \sigma \rangle \rightarrow \kappa_1$ and $\langle c, \sigma \rangle \rightarrow \kappa_2$, then $\kappa_1 = \kappa_2$.

Proof. omitted

More on formal semantics of programming languages:

Semantics and Verification of Software in forthcoming summer semester

