Static Program Analysis

Lecture 11: Abstract Interpretation I (Theoretical Foundations)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

RWTHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Outline

1 Introduction to Abstract Interpretation

2 Theoretical Foundations of Abstract Interpretation

3 Excursus: Concrete Semantics of WHILE Programs

Abstract Interpretation I

- Summary: a theory of sound approximation of the semantics of programs
- Basic idea: execution of program on abstract values (similar to type-level JVM bytecode interpreter)
- Example: parity (even/odd) rather than concrete numbers

Abstract Interpretation I

- Summary: a theory of sound approximation of the semantics of programs
- Basic idea: execution of program on abstract values (similar to type-level JVM bytecode interpreter)
- Example: parity (even/odd) rather than concrete numbers
- Procedure: run program on finite set of abstract values that cover all concrete inputs using abstract operations that cover all concrete outputs
 - ⇒ soundness of approach
- Preciseness of information again characterized by partial order

Abstract Interpretation II

Advantages:

- Abstract interpretation covers conditional branches (if/while) without further extension
- Granularity of abstract domain influences precision and complexity of analysis (mutual tradeoff)
- Numerous variants for different kinds of programs (functional, concurrent, ...)
- Soundness is guaranteed if abstract operations are determined according to theory

Abstract Interpretation II

• Advantages:

- Abstract interpretation covers conditional branches (if/while) without further extension
- Granularity of abstract domain influences precision and complexity of analysis (mutual tradeoff)
- Numerous variants for different kinds of programs (functional, concurrent, ...)
- Soundness is guaranteed if abstract operations are determined according to theory

Disadvantages:

- Complexity generally higher than with dataflow analysis
- Automatic derivation of abstract operations can be difficult

Overview

- Theoretical foundations (Galois connections)
- (Concrete &) Abstract semantics of WHILE programs
- Automatic derivation of abstract semantics
- Application: verification of 16-bit multiplication
- Predicate abstraction
- © CEGAR (CounterExample-Guided Abstraction Refinement)

Outline

Introduction to Abstract Interpretation

2 Theoretical Foundations of Abstract Interpretation

3 Excursus: Concrete Semantics of WHILE Programs

Galois Connections I

Definition 11.1 (Galois connection)

Let (L, \sqsubseteq_L) and (M, \sqsubseteq_M) be complete lattices. A pair (α, γ) of monotonic functions

$$\alpha: L \to M$$
 and $\gamma: M \to L$

is called a Galois connection if

$$\forall I \in L : I \sqsubseteq_L \gamma(\alpha(I))$$
 and $\forall m \in M : \alpha(\gamma(m)) \sqsubseteq_M m$

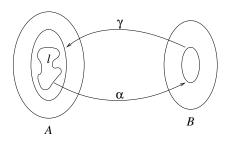
Evariste Galois (1811–1832)

Interpretation:

- $L = \{\text{sets of concrete values}\}, M = \{\text{sets of abstract values}\}$
- \bullet $\alpha =$ abstraction function, $\gamma =$ concretization function
- $I \sqsubseteq_L \gamma(\alpha(I))$: α yields over-approximation
- $\alpha(\gamma(m)) \sqsubseteq_M m$: no loss of precision by abstraction after concretization
- Usually: $I \neq \gamma(\alpha(I)), \ \alpha(\gamma(m)) = m$

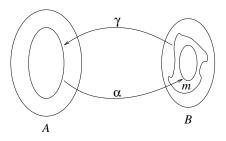
Galois Connections II

For $A = \{\text{concrete values}\}, B = \{\text{abstract values}\}, L = 2^A, M = 2^B$:



 $\forall I \in L : I \sqsubseteq_L \gamma(\alpha(I))$

(α yields over-approximation)



 $\forall m \in M : \alpha(\gamma(m)) \sqsubseteq_M m$

(no loss of precision by abstraction after concretization)

Galois Connections III

Example 11.2 (Parity abstraction)

Concrete domain:
$$L = (2^{\mathbb{Z}}, \subseteq)$$
 Abstract domain: $M = (2^{\{\text{even}, \text{odd}\}}, \subseteq)$

$$\alpha : 2^{\mathbb{Z}} \to 2^{\{\text{even}, \text{odd}\}}$$

$$\alpha(Z) := \begin{cases} \emptyset & \text{if } Z = \emptyset \\ \{\text{even}\} & \text{if } Z \subseteq \mathbb{Z}_{\text{even}} \\ \{\text{odd}\} & \text{if } Z \subseteq \mathbb{Z}_{\text{odd}} \\ \{\text{even}, \text{odd}\} & \text{otherwise} \end{cases}$$

$$\begin{array}{l} \gamma: 2^{\{\mathsf{even},\mathsf{odd}\}} \to 2^{\mathbb{Z}} \\ \gamma(P) := \bigcup_{p \in P} \mathbb{Z}_p \\ \text{where} \\ \mathbb{Z}_{\mathsf{even}} := \{\ldots, -2, 0, 2, \ldots\} \\ \mathbb{Z}_{\mathsf{odd}} := \{\ldots, -3, -1, 1, 3, \ldots\} \end{array}$$

yields a Galois connection.

Galois Connections III

Example 11.2 (Parity abstraction)

Concrete domain:
$$L=(2^{\mathbb{Z}},\subseteq)$$
 Abstract domain: $M=(2^{\{\text{even},\text{odd}\}},\subseteq)$ $\alpha:2^{\mathbb{Z}}\to 2^{\{\text{even},\text{odd}\}}$

$$\alpha: Z^{\square} \to Z^{\{\text{con,oct}\}}$$

$$\alpha(Z) := \begin{cases} \emptyset & \text{if } Z = \emptyset \\ \{\text{even}\} & \text{if } Z \subseteq \mathbb{Z}_{\text{even}} \\ \{\text{odd}\} & \text{if } Z \subseteq \mathbb{Z}_{\text{odd}} \\ \{\text{even, odd}\} & \text{otherwise} \end{cases}$$

$$\begin{array}{l} \gamma: 2^{\{\mathsf{even},\mathsf{odd}\}} \to 2^{\mathbb{Z}} \\ \gamma(P) := \bigcup_{p \in P} \mathbb{Z}_p \\ \text{where} \\ \mathbb{Z}_{\mathsf{even}} := \{\ldots, -2, 0, 2, \ldots\} \\ \mathbb{Z}_{\mathsf{odd}} := \{\ldots, -3, -1, 1, 3, \ldots\} \end{array}$$

yields a Galois connection. For example,

- $\gamma(\alpha(\{1,3,7\})) = \gamma(\{\text{odd}\}) = \{\ldots, -3, -1, 1, 3, \ldots\} \supseteq \{1, 3, 7\}$
- $\alpha(\gamma(\{\text{even}\})) = \alpha(\{\dots, -2, 0, 2, \dots\}) = \{\text{even}\}$

Galois Connections IV

Example 11.3 (Sign abstraction)

Concrete domain:
$$L=(2^{\mathbb{Z}},\subseteq)$$
 Abstract domain: $M=(2^{\{+,-,0\}},\subseteq)$ $\alpha:2^{\mathbb{Z}}\to 2^{\{+,-,0\}}$ $\alpha(Z):=\{\operatorname{sgn}(z)\mid z\in Z\}$
$$\gamma:2^{\{+,-,0\}}\to 2^{\mathbb{Z}}$$

$$\gamma(S):=\bigcup_{s\in S}\mathbb{Z}_s$$
 where
$$\operatorname{sgn}(z):=\begin{cases} + & \text{if } z>0\\ - & \text{if } z<0\\ 0 & \text{otherwise} \end{cases}$$
 $\mathbb{Z}_+:=\{1,2,3,\ldots\}$ $\mathbb{Z}_-:=\{-1,-2,-3,\ldots\}$

yields a Galois connection.

 $\mathbb{Z}_0 := \{0\}$

Galois Connections IV

Example 11.3 (Sign abstraction)

Concrete domain:
$$L=(2^{\mathbb{Z}},\subseteq)$$
 Abstract domain: $M=(2^{\{+,-,0\}},\subseteq)$ $\alpha:2^{\mathbb{Z}}\to 2^{\{+,-,0\}}$ $\alpha(Z):=\{\operatorname{sgn}(z)\mid z\in Z\}$
$$\gamma:2^{\{+,-,0\}}\to 2^{\mathbb{Z}}$$

$$\gamma(S):=\bigcup_{s\in S}\mathbb{Z}_s$$
 where
$$\operatorname{sgn}(z):=\begin{cases} + & \text{if } z>0\\ - & \text{if } z<0\\ 0 & \text{otherwise} \end{cases}$$
 $\mathbb{Z}_+:=\{1,2,3,\ldots\}$ $\mathbb{Z}_-:=\{-1,-2,-3,\ldots\}$ $\mathbb{Z}_0:=\{0\}$

yields a Galois connection. For example,

- $\gamma(\alpha(\{0,1,3\})) = \gamma(\{+,0\}) = \{0,1,2,3,\ldots\} \supseteq \{0,1,3\}$
- $\alpha(\gamma(\{+,-\})) = \alpha(\mathbb{Z} \setminus \{0\}) = \{+,-\}$

Galois Connections V

Example 11.4 (Interval abstraction (cf. Slide 7.17))

Concrete domain:
$$L = (2^{\mathbb{Z}}, \subseteq)$$
 Abstract domain: $M = (Int, \subseteq)$ (where $Int = (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\}) \cup \{\emptyset\})$)
$$\alpha : 2^{\mathbb{Z}} \to Int$$

$$\alpha(Z) := \begin{cases} \emptyset & \text{if } Z = \emptyset \\ [\square Z, \square Z] & \text{otherwise} \end{cases}$$

$$\gamma : Int \to 2^{\mathbb{Z}}$$

$$\gamma(J) := \begin{cases} \emptyset & \text{if } J = \emptyset \\ \{z \in \mathbb{Z} \mid z_1 \le z \le z_2\} & \text{if } J = [z_1, z_2] \end{cases}$$

yields a Galois connection.

Galois Connections V

Example 11.4 (Interval abstraction (cf. Slide 7.17))

Concrete domain:
$$L = (2^{\mathbb{Z}}, \subseteq)$$
 Abstract domain: $M = (Int, \subseteq)$ (where $Int = (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\}) \cup \{\emptyset\})$)
$$\alpha : 2^{\mathbb{Z}} \to Int$$

$$\alpha(Z) := \begin{cases} \emptyset & \text{if } Z = \emptyset \\ [\square Z, \square Z] & \text{otherwise} \end{cases}$$

$$\gamma : Int \to 2^{\mathbb{Z}}$$

$$\gamma(J) := \begin{cases} \emptyset & \text{if } J = \emptyset \\ \{z \in \mathbb{Z} \mid z_1 \le z \le z_2\} & \text{if } J = [z_1, z_2] \end{cases}$$

yields a Galois connection. For example,

- $\gamma(\alpha(\{1,3,5,\ldots\})) = \gamma([1,+\infty]) = \{1,2,3,4,5,\ldots\} \supseteq \{1,3,5,\ldots\}$
 - $\alpha(\gamma([-1,1])) = \alpha(\{-1,0,1\}) = [-1,1]$

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha : L \to M$ and $\gamma : M \to L$, and let $l \in L$, $m \in M$, $L' \subseteq L$, $M' \subseteq M$.

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha : L \to M$ and $\gamma : M \to L$, and let $l \in L$, $m \in M$, $L' \subseteq L$, $M' \subseteq M$.

- $\bullet \quad \alpha(I) \sqsubseteq_{M} m \iff I \sqsubseteq_{L} \gamma(m)$
- $oldsymbol{2} \gamma$ is uniquely determined by α as follows:

$$\gamma(m) = \bigsqcup \{ l \in L \mid \alpha(l) \sqsubseteq_M m \}$$

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha : L \to M$ and $\gamma : M \to L$, and let $l \in L$, $m \in M$, $L' \subseteq L$, $M' \subseteq M$.

- $\bullet \quad \alpha(I) \sqsubseteq_M m \iff I \sqsubseteq_L \gamma(m)$
- **2** γ is uniquely determined by α as follows:

$$\gamma(m) = \bigsqcup \{ l \in L \mid \alpha(l) \sqsubseteq_M m \}$$

3 α is uniquely determined by γ as follows:

$$\alpha(I) = \bigcap \{ m \in M \mid I \sqsubseteq_L \gamma(m) \}$$

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha : L \to M$ and $\gamma : M \to L$, and let $l \in L$, $m \in M$, $L' \subseteq L$, $M' \subseteq M$.

- $\bullet \quad \alpha(I) \sqsubseteq_{M} m \iff I \sqsubseteq_{L} \gamma(m)$
- **2** γ is uniquely determined by α as follows:

$$\gamma(m) = \bigsqcup \{ l \in L \mid \alpha(l) \sqsubseteq_M m \}$$

3 α is uniquely determined by γ as follows:

$$\alpha(I) = \bigcap \{ m \in M \mid I \sqsubseteq_L \gamma(m) \}$$

4 α is completely distributive: $\alpha(\bigsqcup L') = \bigsqcup \{\alpha(I) \mid I \in L'\}$

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha : L \to M$ and $\gamma : M \to L$, and let $l \in L$, $m \in M$, $L' \subseteq L$, $M' \subseteq M$.

- $\bullet \quad \alpha(I) \sqsubseteq_{M} m \iff I \sqsubseteq_{L} \gamma(m)$
- **2** γ is uniquely determined by α as follows:

$$\gamma(m) = \bigsqcup \{ l \in L \mid \alpha(l) \sqsubseteq_M m \}$$

3 α is uniquely determined by γ as follows:

$$\alpha(I) = \bigcap \{ m \in M \mid I \sqsubseteq_L \gamma(m) \}$$

- **1** α is completely distributive: $\alpha(\bigsqcup L') = \bigsqcup \{\alpha(I) \mid I \in L'\}$
- **3** γ is completely multiplicative: $\gamma(\bigcap M') = \bigcap \{\gamma(m) \mid m \in M'\}$

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha : L \to M$ and $\gamma : M \to L$, and let $l \in L$, $m \in M$, $L' \subseteq L$, $M' \subseteq M$.

- **2** γ is uniquely determined by α as follows:

$$\gamma(m) = \bigsqcup \{ l \in L \mid \alpha(l) \sqsubseteq_M m \}$$

3 α is uniquely determined by γ as follows:

$$\alpha(I) = \bigcap \{ m \in M \mid I \sqsubseteq_L \gamma(m) \}$$

- **1** α is completely distributive: $\alpha(\bigsqcup L') = \bigsqcup \{\alpha(I) \mid I \in L'\}$
- **1** γ is completely multiplicative: $\gamma(\bigcap M') = \bigcap \{\gamma(m) \mid m \in M'\}$

Proof.

on the board

Outline

Introduction to Abstract Interpretation

Theoretical Foundations of Abstract Interpretation

3 Excursus: Concrete Semantics of WHILE Programs

Reminder: Syntax of WHILE

The syntax of WHILE Programs is defined by the following context-free grammar (cf. Definition 1.3):

```
a := z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp
b := t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \land b_2 \mid b_1 \lor b_2 \in BExp
c := \text{skip} \mid x := a \mid c_1; c_2 \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{while } b \text{ do } c \in Cmd
```

Program States

- Meaning of expression = value (in the usual sense)
- Depends on the values of the variables in the expression

Program States

- Meaning of expression = value (in the usual sense)
- Depends on the values of the variables in the expression

Definition 11.6 (Program state)

A (program) state is an element of the set

$$\Sigma := \{ \sigma \mid \sigma : Var \rightarrow \mathbb{Z} \},$$

called the state space.

Thus $\sigma(x)$ denotes the value of $x \in Var$ in state $\sigma \in \Sigma$.

Evaluation of Expressions

Definition 11.7 (Evaluation function)

Let $\sigma \in \Sigma$ be a state.

- $val_{\sigma}: AExp \rightarrow \mathbb{Z}: a \rightarrow val_{\sigma}(a)$ yields the value of a in state σ
- **2** $val_{\sigma}: BExp \rightarrow \mathbb{B}: b \rightarrow val_{\sigma}(b)$ yields the value of b in state σ

Evaluation of Expressions

Definition 11.7 (Evaluation function)

Let $\sigma \in \Sigma$ be a state.

- $val_{\sigma}: AExp \rightarrow \mathbb{Z}: a \rightarrow val_{\sigma}(a)$ yields the value of a in state σ
- **2** $val_{\sigma}: BExp \rightarrow \mathbb{B}: b \rightarrow val_{\sigma}(b)$ yields the value of b in state σ

Example 11.8

Let $\sigma(x) = 1$ and $\sigma(y) = 2$.

- **1** $val_{\sigma}(2 * x + y) = 4$
- 2 $val_{\sigma}(\neg(x + 1 > y)) = true$

Derivation Rules

Definition employs derivation rules of the form

$$\frac{\mathsf{Premise}(\mathsf{s})}{\mathsf{Conclusion}}$$

- meaning: if every premise is fulfilled, then conclusion can be drawn
- a rule with no premises is called an axiom

Derivation Rules

Definition employs derivation rules of the form

$$\frac{\mathsf{Premise}(\mathsf{s})}{\mathsf{Conclusion}}$$

- meaning: if every premise is fulfilled, then conclusion can be drawn
- a rule with no premises is called an axiom
- Iterated application yields complete derivation tree
 - initial program and state at root
 - premises as children of inner nodes
 - axioms at leafs

Execution of Statements I

Definition 11.9 (Execution relation for statements)

If $c \in \mathit{Cmd}$ and $\sigma \in \Sigma$, then $\langle c, \sigma \rangle$ is called a configuration. The execution relation

$$\rightarrow \subseteq (\textit{Cmd} \times \Sigma) \times ((\textit{Cmd} \cup \{\downarrow\}) \times \Sigma)$$

is defined by the following rules:

$$(\mathsf{skip}) \overline{\langle \mathsf{skip}, \sigma \rangle \to \langle \downarrow, \sigma \rangle}$$

$$(\mathsf{asgn}) \overline{\langle x := \mathsf{a}, \sigma \rangle \to \langle \downarrow, \sigma [\mathsf{x} \mapsto \mathsf{val}_\sigma(\mathsf{a})] \rangle}$$

$$(\mathsf{seq1}) \frac{\langle c_1, \sigma \rangle \to \langle c_1', \sigma' \rangle \ c_1' \neq \downarrow}{\langle c_1; c_2, \sigma \rangle \to \langle c_1'; c_2, \sigma' \rangle}$$

$$(\mathsf{seq2}) \frac{\langle c_1, \sigma \rangle \to \langle \downarrow, \sigma' \rangle}{\langle c_1; c_2, \sigma \rangle \to \langle c_2, \sigma' \rangle}$$

Execution of Statements II

Definition 11.9 (Execution relation for statements; continued)

$$\begin{aligned} & \textit{val}_{\sigma}(b) = \mathsf{true} \\ & (\mathsf{if1}) \frac{\textit{val}_{\sigma}(b) = \mathsf{true}}{\langle \mathsf{if} \ b \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2, \sigma \rangle \to \langle c_1, \sigma \rangle} \\ & (\mathsf{if2}) \frac{\textit{val}_{\sigma}(b) = \mathsf{false}}{\langle \mathsf{if} \ b \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2, \sigma \rangle \to \langle c_2, \sigma \rangle} \\ & (\mathsf{wh1}) \frac{\textit{val}_{\sigma}(b) = \mathsf{true}}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma \rangle \to \langle c; \mathsf{while} \ b \ \mathsf{do} \ c, \sigma \rangle} \\ & \frac{\textit{val}_{\sigma}(b) = \mathsf{false}}{\langle \mathsf{while} \ b \ \mathsf{do} \ c, \sigma \rangle \to \langle \downarrow, \sigma \rangle} \end{aligned}$$

Remark: ↓ indicates successful termination of the program

An Execution Example

Example 11.10

•
$$c := y := 1$$
; while $\underbrace{\neg(x=1)}_{b} do \underbrace{y := y*x}_{c_1}$; $\underbrace{x := x-1}_{c_2}$

- Claim: $\langle c, \sigma \rangle \to^+ \langle \downarrow, \sigma_{1,6} \rangle$ for every $\sigma \in \Sigma$ with $\sigma(x) = 3$
- Notation: $\sigma_{i,j}$ means $\sigma(\mathbf{x}) = i$, $\sigma(\mathbf{y}) = j$
- Derivation: on the board

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem 11.11

The execution relation for statements is deterministic, i.e., whenever $c \in \mathit{Cmd}$, $\sigma \in \Sigma$ and $\kappa_1, \kappa_2 \in (\mathit{Cmd} \cup \{\downarrow\}) \times \Sigma$ such that $\langle c, \sigma \rangle \to \kappa_1$ and $\langle c, \sigma \rangle \to \kappa_2$, then $\kappa_1 = \kappa_2$.

Proof.

omitted

Determinism Property of Execution Relation

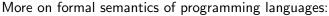
This operational semantics is well defined in the following sense:

Theorem 11.11

The execution relation for statements is deterministic, i.e., whenever $c \in Cmd$, $\sigma \in \Sigma$ and $\kappa_1, \kappa_2 \in (Cmd \cup \{\downarrow\}) \times \Sigma$ such that $\langle c, \sigma \rangle \to \kappa_1$ and $\langle c, \sigma \rangle \to \kappa_2$, then $\kappa_1 = \kappa_2$.

Proof.

omitted



Semantics and Verification of Software in forthcoming summer semester