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Abstract Interpretation I

Summary: a theory of sound approximation of the semantics of
programs

Basic idea: execution of program on abstract values
(similar to type-level JVM bytecode interpreter)

Example: parity (even/odd) rather than concrete numbers

Procedure: run program on finite set of abstract values that cover all
concrete inputs using abstract operations that cover all concrete
outputs
=⇒ soundness of approach

Preciseness of information again characterized by partial order

Static Program Analysis Winter Semester 2014/15 11.3



Abstract Interpretation I

Summary: a theory of sound approximation of the semantics of
programs

Basic idea: execution of program on abstract values
(similar to type-level JVM bytecode interpreter)

Example: parity (even/odd) rather than concrete numbers

Procedure: run program on finite set of abstract values that cover all
concrete inputs using abstract operations that cover all concrete
outputs
=⇒ soundness of approach

Preciseness of information again characterized by partial order

Static Program Analysis Winter Semester 2014/15 11.3



Abstract Interpretation II

Advantages:
Abstract interpretation covers conditional branches (if/while)
without further extension
Granularity of abstract domain influences precision and complexity of
analysis (mutual tradeoff)
Numerous variants for different kinds of programs (functional,
concurrent, ...)
Soundness is guaranteed if abstract operations are determined
according to theory

Disadvantages:
Complexity generally higher than with dataflow analysis
Automatic derivation of abstract operations can be difficult
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Overview

1 Theoretical foundations (Galois connections)

2 (Concrete &) Abstract semantics of WHILE programs

3 Automatic derivation of abstract semantics

4 Application: verification of 16-bit multiplication

5 Predicate abstraction

6 CEGAR (CounterExample-Guided Abstraction Refinement)
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Galois Connections I

Definition 11.1 (Galois connection)

Let (L,vL) and (M,vM) be complete lattices. A pair
(α, γ) of monotonic functions

α : L→ M and γ : M → L

is called a Galois connection if

∀l ∈ L : l vL γ(α(l)) and ∀m ∈ M : α(γ(m)) vM m
Evariste Galois
(1811–1832)

Interpretation:

L = {sets of concrete values}, M = {sets of abstract values}
α = abstraction function, γ = concretization function
l vL γ(α(l)): α yields over-approximation
α(γ(m)) vM m: no loss of precision by abstraction after
concretization
Usually: l 6= γ(α(l)), α(γ(m)) = m
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Galois Connections II

For A = {concrete values}, B = {abstract values}, L = 2A, M = 2B :

l

γ

α

B
A

∀l ∈ L : l vL γ(α(l))

(α yields over-approximation)

γ

α

B
A

m

∀m ∈ M : α(γ(m)) vM m

(no loss of precision by
abstraction after concretization)
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Galois Connections III

Example 11.2 (Parity abstraction)

Concrete domain: L = (2Z,⊆) Abstract domain: M = (2{even,odd},⊆)

α : 2Z → 2{even,odd}

α(Z ) :=


∅ if Z = ∅
{even} if Z ⊆ Zeven

{odd} if Z ⊆ Zodd

{even, odd} otherwise

γ : 2{even,odd} → 2Z

γ(P) :=
⋃

p∈P Zp

where
Zeven := {. . . ,−2, 0, 2, . . .}
Zodd := {. . . ,−3,−1, 1, 3, . . .}

yields a Galois connection.

For example,

γ(α({1, 3, 7})) = γ({odd}) = {. . . ,−3,−1, 1, 3, . . .} ⊇ {1, 3, 7}
α(γ({even})) = α({. . . ,−2, 0, 2, . . .}) = {even}
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Galois Connections IV

Example 11.3 (Sign abstraction)

Concrete domain: L = (2Z,⊆) Abstract domain: M = (2{+,−,0},⊆)

α : 2Z → 2{+,−,0}

α(Z ) := {sgn(z) | z ∈ Z}
γ : 2{+,−,0} → 2Z

γ(S) :=
⋃

s∈S Zs

where

sgn(z) :=

+ if z > 0
− if z < 0
0 otherwise

Z+ := {1, 2, 3, . . .}
Z− := {−1,−2,−3, . . .}
Z0 := {0}

yields a Galois connection.

For example,

γ(α({0, 1, 3})) = γ({+, 0}) = {0, 1, 2, 3, . . .} ⊇ {0, 1, 3}
α(γ({+,−})) = α(Z \ {0}) = {+,−}
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Galois Connections V

Example 11.4 (Interval abstraction (cf. Slide 7.17))

Concrete domain: L = (2Z,⊆) Abstract domain: M = (Int,⊆)
(where Int = (Z ∪ {−∞})× (Z ∪ {+∞}) ∪ {∅})

α : 2Z → Int

α(Z ) :=

{
∅ if Z = ∅
[
d

Z ,
⊔
Z ] otherwise

γ : Int → 2Z

γ(J) :=

{
∅ if J = ∅
{z ∈ Z | z1 ≤ z ≤ z2} if J = [z1, z2]

yields a Galois connection.

For example,

γ(α({1, 3, 5, . . .})) = γ([1,+∞]) = {1, 2, 3, 4, 5, . . .} ⊇ {1, 3, 5, . . .}
α(γ([−1, 1])) = α({−1, 0, 1}) = [−1, 1]
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Properties of Galois Connections

Lemma 11.5

Let (α, γ) be a Galois connection with α : L→ M and γ : M → L, and let
l ∈ L, m ∈ M, L′ ⊆ L, M ′ ⊆ M.

1 α(l) vM m ⇐⇒ l vL γ(m)

2 γ is uniquely determined by α as follows:

γ(m) =
⊔
{l ∈ L | α(l) vM m}

3 α is uniquely determined by γ as follows:

α(l) =
l
{m ∈ M | l vL γ(m)}

4 α is completely distributive: α(
⊔

L′) =
⊔
{α(l) | l ∈ L′}

5 γ is completely multiplicative: γ(
d

M ′) =
d
{γ(m) | m ∈ M ′}

Proof.

on the board
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Reminder: Syntax of WHILE

The syntax of WHILE Programs is defined by the following context-free
grammar (cf. Definition 1.3):

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd
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Program States

Meaning of expression = value (in the usual sense)

Depends on the values of the variables in the expression

Definition 11.6 (Program state)

A (program) state is an element of the set

Σ := {σ | σ : Var → Z},
called the state space.

Thus σ(x) denotes the value of x ∈ Var in state σ ∈ Σ.
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Evaluation of Expressions

Definition 11.7 (Evaluation function)

Let σ ∈ Σ be a state.

1 valσ : AExp → Z : a→ valσ(a)
yields the value of a in state σ

2 valσ : BExp → B : b → valσ(b)
yields the value of b in state σ

Example 11.8

Let σ(x) = 1 and σ(y) = 2.

1 valσ(2 * x + y) = 4

2 valσ(¬(x + 1 > y)) = true
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Derivation Rules

Definition employs derivation rules of the form

Name
Premise(s)

Conclusion

meaning: if every premise is fulfilled, then conclusion can be drawn
a rule with no premises is called an axiom

Iterated application yields complete derivation tree

initial program and state at root
premises as children of inner nodes
axioms at leafs
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Execution of Statements I

Definition 11.9 (Execution relation for statements)

If c ∈ Cmd and σ ∈ Σ, then 〈c , σ〉 is called a configuration. The
execution relation

→ ⊆ (Cmd × Σ)× ((Cmd ∪ {↓})× Σ)

is defined by the following rules:

(skip)
〈skip, σ〉 → 〈↓, σ〉

(asgn)
〈x := a, σ〉 → 〈↓, σ[x 7→ valσ(a)]〉

(seq1)
〈c1, σ〉 → 〈c ′1, σ′〉 c ′1 6= ↓
〈c1;c2, σ〉 → 〈c ′1;c2, σ

′〉

(seq2)
〈c1, σ〉 → 〈↓, σ′〉
〈c1;c2, σ〉 → 〈c2, σ

′〉
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Execution of Statements II

Definition 11.9 (Execution relation for statements; continued)

(if1)
valσ(b) = true

〈if b then c1 else c2, σ〉 → 〈c1, σ〉

(if2)
valσ(b) = false

〈if b then c1 else c2, σ〉 → 〈c2, σ〉

(wh1)
valσ(b) = true

〈while b do c , σ〉 → 〈c;while b do c, σ〉

(wh2)
valσ(b) = false

〈while b do c , σ〉 → 〈↓, σ〉

Remark: ↓ indicates successful termination of the program
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An Execution Example

Example 11.10

c := y := 1; while¬(x=1)︸ ︷︷ ︸
b

do y := y*x︸ ︷︷ ︸
c1

; x := x-1︸ ︷︷ ︸
c2︸ ︷︷ ︸

c0

Claim: 〈c , σ〉 →+ 〈↓, σ1,6〉 for every σ ∈ Σ with σ(x) = 3

Notation: σi ,j means σ(x) = i , σ(y) = j

Derivation: on the board
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Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem 11.11

The execution relation for statements is deterministic, i.e., whenever
c ∈ Cmd, σ ∈ Σ and κ1, κ2 ∈ (Cmd ∪ {↓})× Σ such that 〈c , σ〉 → κ1

and 〈c , σ〉 → κ2, then κ1 = κ2.

Proof.

omitted

More on formal semantics of programming languages:
Semantics and Verification of Software in forthcoming summer semester
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