Static Program Analysis

Lecture 11: Abstract Interpretation I (Theoretical Foundations)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RMNHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

Outline

(1) Introduction to Abstract Interpretation

(2) Theoretical Foundations of Abstract Interpretation

(3) Excursus: Concrete Semantics of WHILE Programs

Abstract Interpretation I

- Summary: a theory of sound approximation of the semantics of programs
- Basic idea: execution of program on abstract values (similar to type-level JVM bytecode interpreter)
- Example: parity (even/odd) rather than concrete numbers
- Summary: a theory of sound approximation of the semantics of programs
- Basic idea: execution of program on abstract values (similar to type-level JVM bytecode interpreter)
- Example: parity (even/odd) rather than concrete numbers
- Procedure: run program on finite set of abstract values that cover all concrete inputs using abstract operations that cover all concrete outputs
\Longrightarrow soundness of approach
- Preciseness of information again characterized by partial order

Abstract Interpretation II

- Advantages:
- Abstract interpretation covers conditional branches (if/while) without further extension
- Granularity of abstract domain influences precision and complexity of analysis (mutual tradeoff)
- Numerous variants for different kinds of programs (functional, concurrent, ...)
- Soundness is guaranteed if abstract operations are determined according to theory

Abstract Interpretation II

- Advantages:
- Abstract interpretation covers conditional branches (if/while) without further extension
- Granularity of abstract domain influences precision and complexity of analysis (mutual tradeoff)
- Numerous variants for different kinds of programs (functional, concurrent, ...)
- Soundness is guaranteed if abstract operations are determined according to theory
- Disadvantages:
- Complexity generally higher than with dataflow analysis
- Automatic derivation of abstract operations can be difficult

Overview

(1) Theoretical foundations (Galois connections)
(2) (Concrete \&) Abstract semantics of WHILE programs
(3) Automatic derivation of abstract semantics
(9) Application: verification of 16 -bit multiplication
(3) Predicate abstraction
(6) CEGAR (CounterExample-Guided Abstraction Refinement)

Outline

(1) Introduction to Abstract Interpretation
(2) Theoretical Foundations of Abstract Interpretation

(3) Excursus: Concrete Semantics of WHILE Programs

Galois Connections I

Definition 11.1 (Galois connection)

Let $\left(L, \sqsubseteq_{L}\right)$ and $\left(M, \sqsubseteq_{M}\right)$ be complete lattices. A pair (α, γ) of monotonic functions

$$
\alpha: L \rightarrow M \quad \text { and } \quad \gamma: M \rightarrow L
$$

is called a Galois connection if
$\forall I \in L: I \sqsubseteq_{L} \gamma(\alpha(I)) \quad$ and $\quad \forall m \in M: \alpha(\gamma(m)) \sqsubseteq_{M} m$

Evariste Galois (1811-1832)

Interpretation:

- $L=\{$ sets of concrete values $\}, M=\{$ sets of abstract values $\}$
- $\alpha=$ abstraction function, $\gamma=$ concretization function
- $/ \sqsubseteq L \gamma(\alpha(/))$: α yields over-approximation
- $\alpha(\gamma(m)) \sqsubseteq_{M} m$: no loss of precision by abstraction after concretization
- Usually: $I \neq \gamma(\alpha(I)), \alpha(\gamma(m))=m$

Galois Connections II

For $A=\{$ concrete values $\}, B=\{$ abstract values $\}, L=2^{A}, M=2^{B}$:

$$
\forall I \in L: I \sqsubseteq L \gamma(\alpha(I))
$$

(α yields over-approximation)

$$
\forall m \in M: \alpha(\gamma(m)) \sqsubseteq_{M} m
$$

(no loss of precision by abstraction after concretization)

Galois Connections III

Example 11.2 (Parity abstraction)

Concrete domain: $L=\left(2^{\mathbb{Z}}, \subseteq\right) \quad$ Abstract domain: $M=\left(2^{\{\text {even,odd }\}}, \subseteq\right)$

$$
\begin{aligned}
& \alpha: 2^{\mathbb{Z}} \rightarrow 2^{\{\text {even,odd }\}} \\
& \alpha(Z):= \begin{cases}\emptyset & \text { if } Z=\emptyset \\
\{\text { even }\} & \text { if } Z \subseteq \mathbb{Z}_{\text {even }} \\
\{\text { odd }\} & \text { if } Z \subseteq \mathbb{Z}_{\text {odd }} \\
\{\text { even, odd }\} & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\gamma: 2^{\{\text {even,odd }\}} & \rightarrow 2^{\mathbb{Z}} \\
\gamma(P) & :=\bigcup_{p \in P} \mathbb{Z}_{p}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbb{Z}_{\text {even }} & :=\{\ldots,-2,0,2, \ldots\} \\
\mathbb{Z}_{\text {odd }} & :=\{\ldots,-3,-1,1,3, \ldots\}
\end{aligned}
$$

yields a Galois connection.

Galois Connections III

Example 11.2 (Parity abstraction)

Concrete domain: $L=\left(2^{\mathbb{Z}}, \subseteq\right) \quad$ Abstract domain: $M=\left(2^{\text {\{even,odd }\}}, \subseteq\right)$

$$
\begin{aligned}
& \alpha: 2^{\mathbb{Z}} \rightarrow 2^{\{\text {even,odd }\}} \\
& \alpha(Z):= \begin{cases}\emptyset & \text { if } Z=\emptyset \\
\{\text { even }\} & \text { if } Z \subseteq \mathbb{Z}_{\text {even }} \\
\{\text { odd }\} & \text { if } Z \subseteq \mathbb{Z}_{\text {odd }} \\
\{\text { even, odd }\} & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\gamma: 2^{\{\text {even }, \text { odd }\}} & \rightarrow 2^{\mathbb{Z}} \\
\gamma(P) & :=\bigcup_{p \in P} \mathbb{Z}_{p}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbb{Z}_{\text {even }} & :=\{\ldots,-2,0,2, \ldots\} \\
\mathbb{Z}_{\text {odd }} & :=\{\ldots,-3,-1,1,3, \ldots\}
\end{aligned}
$$

yields a Galois connection. For example,

- $\gamma(\alpha(\{1,3,7\}))=\gamma(\{$ odd $\})=\{\ldots,-3,-1,1,3, \ldots\} \supseteq\{1,3,7\}$
- $\alpha(\gamma(\{$ even $\}))=\alpha(\{\ldots,-2,0,2, \ldots\})=\{$ even $\}$

Galois Connections IV

Example 11.3 (Sign abstraction)

Concrete domain: $L=\left(2^{\mathbb{Z}}, \subseteq\right) \quad$ Abstract domain: $M=\left(2^{\{+,-, 0\}}, \subseteq\right)$

$$
\begin{aligned}
& \alpha: 2^{\mathbb{Z}} \rightarrow 2^{\{+,-, 0\}} \\
& \alpha(Z):=\{\operatorname{sgn}(z) \mid z \in Z\} \\
& \gamma: 2^{\{+,-, 0\}} \rightarrow 2^{\mathbb{Z}} \\
& \gamma(S):=\bigcup_{s \in S} \mathbb{Z}_{s} \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{sgn}(z) & := \begin{cases}+ & \text { if } z>0 \\
- & \text { if } z<0 \\
0 & \text { otherwise }\end{cases} \\
\mathbb{Z}_{+} & :=\{1,2,3, \ldots\} \\
\mathbb{Z}_{-} & :=\{-1,-2,-3, \ldots\} \\
\mathbb{Z}_{0} & :=\{0\}
\end{aligned}
$$

yields a Galois connection.

Galois Connections IV

Example 11.3 (Sign abstraction)

Concrete domain: $L=\left(2^{\mathbb{Z}}, \subseteq\right) \quad$ Abstract domain: $M=\left(2^{\{+,-, 0\}}, \subseteq\right)$

$$
\begin{aligned}
& \alpha: 2^{\mathbb{Z}} \rightarrow 2^{\{+,-, 0\}} \\
& \alpha(Z):=\{\operatorname{sgn}(z) \mid z \in Z\} \\
& \gamma: 2^{\{+,-, 0\}} \rightarrow 2^{\mathbb{Z}} \\
& \gamma(S):=\bigcup_{s \in S} \mathbb{Z}_{s} \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{sgn}(z) & := \begin{cases}+ & \text { if } z>0 \\
- & \text { if } z<0 \\
0 & \text { otherwise }\end{cases} \\
\mathbb{Z}_{+} & :=\{1,2,3, \ldots\} \\
\mathbb{Z}_{-} & :=\{-1,-2,-3, \ldots\} \\
\mathbb{Z}_{0} & :=\{0\}
\end{aligned}
$$

yields a Galois connection. For example,

- $\gamma(\alpha(\{0,1,3\}))=\gamma(\{+, 0\})=\{0,1,2,3, \ldots\} \supseteq\{0,1,3\}$
- $\alpha(\gamma(\{+,-\}))=\alpha(\mathbb{Z} \backslash\{0\})=\{+,-\}$

Galois Connections V

Example 11.4 (Interval abstraction (cf. Slide 7.17))

Concrete domain: $L=\left(2^{\mathbb{Z}}, \subseteq\right) \quad$ Abstract domain: $M=(\operatorname{lnt}, \subseteq)$ (where Int $=(\mathbb{Z} \cup\{-\infty\}) \times(\mathbb{Z} \cup\{+\infty\}) \cup\{\emptyset\})$

$$
\begin{aligned}
\alpha: 2^{\mathbb{Z}} & \rightarrow \operatorname{Int} \\
\alpha(Z) & := \begin{cases}\emptyset & \text { if } Z=\emptyset \\
{[\sqcap Z, \sqcup Z]} & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\gamma: \operatorname{In} t \rightarrow 2^{\mathbb{Z}}
$$

$$
\gamma(J):= \begin{cases}\emptyset & \text { if } J=\emptyset \\ \left\{z \in \mathbb{Z} \mid z_{1} \leq z \leq z_{2}\right\} & \text { if } J=\left[z_{1}, z_{2}\right]\end{cases}
$$

yields a Galois connection.

Galois Connections V

Example 11.4 (Interval abstraction (cf. Slide 7.17))

Concrete domain: $L=\left(2^{\mathbb{Z}}, \subseteq\right) \quad$ Abstract domain: $M=(\operatorname{lnt}, \subseteq)$ (where Int $=(\mathbb{Z} \cup\{-\infty\}) \times(\mathbb{Z} \cup\{+\infty\}) \cup\{\emptyset\})$

$$
\begin{aligned}
\alpha: 2^{\mathbb{Z}} & \rightarrow \operatorname{Int} \\
\alpha(Z) & := \begin{cases}\emptyset & \text { if } Z=\emptyset \\
{[\sqcap Z, \sqcup Z]} & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\gamma: \operatorname{In} t \rightarrow 2^{\mathbb{Z}}
$$

$$
\gamma(J):= \begin{cases}\emptyset & \text { if } J=\emptyset \\ \left\{z \in \mathbb{Z} \mid z_{1} \leq z \leq z_{2}\right\} & \text { if } J=\left[z_{1}, z_{2}\right]\end{cases}
$$

yields a Galois connection. For example,

- $\gamma(\alpha(\{1,3,5, \ldots\}))=\gamma([1,+\infty])=\{1,2,3,4,5, \ldots\} \supseteq\{1,3,5, \ldots\}$
- $\alpha(\gamma([-1,1]))=\alpha(\{-1,0,1\})=[-1,1]$

Properties of Galois Connections

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha: L \rightarrow M$ and $\gamma: M \rightarrow L$, and let $l \in L, m \in M, L^{\prime} \subseteq L, M^{\prime} \subseteq M$.
(1) $\alpha(I) \sqsubseteq_{M} m \Longleftrightarrow I \sqsubseteq_{L} \gamma(m)$

Properties of Galois Connections

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha: L \rightarrow M$ and $\gamma: M \rightarrow L$, and let $l \in L, m \in M, L^{\prime} \subseteq L, M^{\prime} \subseteq M$.
(1) $\alpha(I) \sqsubseteq_{M} m \Longleftrightarrow I \sqsubseteq_{L} \gamma(m)$
(2) γ is uniquely determined by α as follows:

$$
\gamma(m)=\bigsqcup\left\{I \in L \mid \alpha(I) \sqsubseteq_{M} m\right\}
$$

Properties of Galois Connections

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha: L \rightarrow M$ and $\gamma: M \rightarrow L$, and let $l \in L, m \in M, L^{\prime} \subseteq L, M^{\prime} \subseteq M$.
(1) $\alpha(I) \sqsubseteq_{M} m \Longleftrightarrow I \sqsubseteq L \gamma(m)$
(2) γ is uniquely determined by α as follows:

$$
\gamma(m)=\bigsqcup\left\{I \in L \mid \alpha(I) \sqsubseteq_{M} m\right\}
$$

(3) α is uniquely determined by γ as follows:

$$
\alpha(I)=\prod\{m \in M \mid I \sqsubseteq L \gamma(m)\}
$$

Properties of Galois Connections

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha: L \rightarrow M$ and $\gamma: M \rightarrow L$, and let $l \in L, m \in M, L^{\prime} \subseteq L, M^{\prime} \subseteq M$.
(1) $\alpha(I) \sqsubseteq_{M} m \Longleftrightarrow I \sqsubseteq L \gamma(m)$
(2) γ is uniquely determined by α as follows:

$$
\gamma(m)=\bigsqcup\left\{I \in L \mid \alpha(I) \sqsubseteq_{M} m\right\}
$$

(3) α is uniquely determined by γ as follows:

$$
\alpha(I)=\prod\{m \in M \mid I \sqsubseteq L \gamma(m)\}
$$

(9) α is completely distributive: $\alpha\left(\bigsqcup L^{\prime}\right)=\bigsqcup\left\{\alpha(I) \mid I \in L^{\prime}\right\}$

Properties of Galois Connections

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha: L \rightarrow M$ and $\gamma: M \rightarrow L$, and let $l \in L, m \in M, L^{\prime} \subseteq L, M^{\prime} \subseteq M$.
(1) $\alpha(I) \sqsubseteq_{M} m \Longleftrightarrow I \sqsubseteq L \gamma(m)$
(2) γ is uniquely determined by α as follows:

$$
\gamma(m)=\bigsqcup\left\{I \in L \mid \alpha(I) \sqsubseteq_{M} m\right\}
$$

(3) α is uniquely determined by γ as follows:

$$
\alpha(I)=\prod\{m \in M \mid I \sqsubseteq L \gamma(m)\}
$$

(9) α is completely distributive: $\alpha\left(\bigsqcup L^{\prime}\right)=\bigsqcup\left\{\alpha(I) \mid I \in L^{\prime}\right\}$
(0) γ is completely multiplicative: $\left.\gamma\left(\sqcap M^{\prime}\right)=\right\rceil\left\{\gamma(m) \mid m \in M^{\prime}\right\}$

Properties of Galois Connections

Lemma 11.5

Let (α, γ) be a Galois connection with $\alpha: L \rightarrow M$ and $\gamma: M \rightarrow L$, and let $I \in L, m \in M, L^{\prime} \subseteq L, M^{\prime} \subseteq M$.
(1) $\alpha(I) \sqsubseteq_{M} m \Longleftrightarrow I \sqsubseteq_{L} \gamma(m)$
(2) γ is uniquely determined by α as follows:

$$
\gamma(m)=\bigsqcup\{I \in L \mid \alpha(I) \sqsubseteq M m\}
$$

(3) α is uniquely determined by γ as follows:

$$
\alpha(I)=\prod\{m \in M \mid I \sqsubseteq L \gamma(m)\}
$$

(9) α is completely distributive: $\alpha\left(\bigsqcup L^{\prime}\right)=\bigsqcup\left\{\alpha(I) \mid I \in L^{\prime}\right\}$
(9) γ is completely multiplicative: $\left.\gamma\left(\Pi M^{\prime}\right)=\right\rceil\left\{\gamma(m) \mid m \in M^{\prime}\right\}$

Proof.

Outline

(1) Introduction to Abstract Interpretation
(2) Theoretical Foundations of Abstract Interpretation
(3) Excursus: Concrete Semantics of WHILE Programs

Reminder: Syntax of WHILE

The syntax of WHILE Programs is defined by the following context-free grammar (cf. Definition 1.3):
$a::=z|x| a_{1}+a_{2}\left|a_{1}-a_{2}\right| a_{1} * a_{2} \in$ AExp
$b::=t\left|a_{1}=a_{2}\right| a_{1}>a_{2}|\neg b| b_{1} \wedge b_{2} \mid b_{1} \vee b_{2} \in$ BExp
$c::=\operatorname{skip}|x:=a| c_{1} ; c_{2} \mid$ if b then c_{1} else $c_{2} \mid$ while b do $c \in C m d$

Program States

- Meaning of expression = value (in the usual sense)
- Depends on the values of the variables in the expression

Program States

- Meaning of expression = value (in the usual sense)
- Depends on the values of the variables in the expression

Definition 11.6 (Program state)

A (program) state is an element of the set

$$
\Sigma:=\{\sigma \mid \sigma: \operatorname{Var} \rightarrow \mathbb{Z}\}
$$

called the state space.

Thus $\sigma(x)$ denotes the value of $x \in \operatorname{Var}$ in state $\sigma \in \Sigma$.

Evaluation of Expressions

Definition 11.7 (Evaluation function)

Let $\sigma \in \Sigma$ be a state.
(1) $\mathrm{val}_{\sigma}: A E x p \rightarrow \mathbb{Z}: a \rightarrow \mathrm{val}_{\sigma}(a)$ yields the value of a in state σ
(2) $\mathrm{val}_{\sigma}: B E x p \rightarrow \mathbb{B}: b \rightarrow \operatorname{val}_{\sigma}(b)$ yields the value of b in state σ

Evaluation of Expressions

Definition 11.7 (Evaluation function)

Let $\sigma \in \Sigma$ be a state.
(1) $\mathrm{val}_{\sigma}: A E x p \rightarrow \mathbb{Z}: a \rightarrow \mathrm{val}_{\sigma}(a)$ yields the value of a in state σ
(2) $\mathrm{val}_{\sigma}: B E x p \rightarrow \mathbb{B}: b \rightarrow \operatorname{val}_{\sigma}(b)$ yields the value of b in state σ

Example 11.8

Let $\sigma(\mathrm{x})=1$ and $\sigma(\mathrm{y})=2$.
(1) $\operatorname{val}_{\sigma}(2 * \mathrm{x}+\mathrm{y})=4$
(2) $\operatorname{val}_{\sigma}(\neg(\mathrm{x}+1>\mathrm{y}))=$ true

Derivation Rules

- Definition employs derivation rules of the form

$$
\text { Name } \frac{\text { Premise(s) }}{\text { Conclusion }}
$$

- meaning: if every premise is fulfilled, then conclusion can be drawn
- a rule with no premises is called an axiom

Derivation Rules

- Definition employs derivation rules of the form

$$
\text { Name } \frac{\text { Premise(s) }}{\text { Conclusion }}
$$

- meaning: if every premise is fulfilled, then conclusion can be drawn
- a rule with no premises is called an axiom
- Iterated application yields complete derivation tree
- initial program and state at root
- premises as children of inner nodes
- axioms at leafs

Execution of Statements I

Definition 11.9 (Execution relation for statements)

If $c \in C m d$ and $\sigma \in \Sigma$, then $\langle c, \sigma\rangle$ is called a configuration. The execution relation

$$
\rightarrow \subseteq(C m d \times \Sigma) \times((C m d \cup\{\downarrow\}) \times \Sigma)
$$

is defined by the following rules:

$$
\begin{gathered}
\text { (skip) } \overline{\langle\text { skip }, \sigma\rangle \rightarrow\langle\downarrow, \sigma\rangle} \\
\text { (seq1) } \frac{\left\langle c_{1}, \sigma\right\rangle \rightarrow\left\langle c_{1}^{\prime}, \sigma^{\prime}\right\rangle c_{1}^{\prime} \neq \downarrow}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \rightarrow\left\langle c_{1}^{\prime} ; c_{2}, \sigma^{\prime}\right\rangle} \\
\text { (seq2) } \frac{\left\langle c_{1}, \sigma\right\rangle \rightarrow\left\langle\downarrow, \sigma^{\prime}\right\rangle}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \rightarrow\left\langle c_{2}, \sigma^{\prime}\right\rangle}
\end{gathered}
$$

Execution of Statements II

Definition 11.9 (Execution relation for statements; continued)

$$
\begin{gathered}
\text { (if1) } \frac{v a l_{\sigma}(b)=\text { true }}{\left\langle\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle \rightarrow\left\langle c_{1}, \sigma\right\rangle} \\
\text { (if2) } \frac{v a l_{\sigma}(b)=\text { false }}{\left\langle\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle \rightarrow\left\langle c_{2}, \sigma\right\rangle} \\
\text { (wh1) } \frac{v a l_{\sigma}(b)=\text { true }}{\langle\text { while } b \text { do } c, \sigma\rangle \rightarrow\langle c ; \text { while } b \text { do } c, \sigma\rangle} \\
\text { (wh2) } \frac{v a l_{\sigma}(b)=\text { false }}{\langle\text { while } b \text { do } c, \sigma\rangle \rightarrow\langle\downarrow, \sigma\rangle}
\end{gathered}
$$

Remark: \downarrow indicates successful termination of the program

An Execution Example

Example 11.10

- $c:=\mathrm{y}:=1$; while $\underbrace{\neg(\mathrm{x}=1)}_{b}$ do $\underbrace{\underbrace{:=\mathrm{y} * \mathrm{x}}_{c_{1}} ; \underbrace{\mathrm{x}:=\mathrm{x}-1}_{c_{2}}}_{c_{0}}$
- Claim: $\langle c, \sigma\rangle \rightarrow^{+}\left\langle\downarrow, \sigma_{1,6}\right\rangle$ for every $\sigma \in \Sigma$ with $\sigma(\mathrm{x})=3$
- Notation: $\sigma_{i, j}$ means $\sigma(\mathrm{x})=i, \sigma(\mathrm{y})=j$
- Derivation: on the board

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem 11.11

The execution relation for statements is deterministic, i.e., whenever $c \in C m d, \sigma \in \Sigma$ and $\kappa_{1}, \kappa_{2} \in(C m d \cup\{\downarrow\}) \times \Sigma$ such that $\langle c, \sigma\rangle \rightarrow \kappa_{1}$ and $\langle c, \sigma\rangle \rightarrow \kappa_{2}$, then $\kappa_{1}=\kappa_{2}$.

Proof.

omitted

Determinism Property of Execution Relation

This operational semantics is well defined in the following sense:

Theorem 11.11

The execution relation for statements is deterministic, i.e., whenever $c \in C m d, \sigma \in \Sigma$ and $\kappa_{1}, \kappa_{2} \in(C m d \cup\{\downarrow\}) \times \Sigma$ such that $\langle c, \sigma\rangle \rightarrow \kappa_{1}$ and $\langle c, \sigma\rangle \rightarrow \kappa_{2}$, then $\kappa_{1}=\kappa_{2}$.

Proof.

omitted

More on formal semantics of programming languages: Semantics and Verification of Software in forthcoming summer semester

