Static Program Analysis Lecture 10: Dataflow Analysis IX (Java Bytecode Verification)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

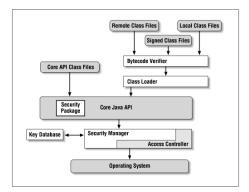
1 Recap: The Java Virtual Machine

2 The Dataflow Analysis

3 Examples of Bytecode Verification

Java Security: the Sandbox

- Insulation layer providing indirect access to system resources
- Hardware access via API classes and methods
- Bytecode verification upon uploading
 - well-typedness
 - proper object referencing
 - proper control flow



The Java Virtual Machine

- Conventional stack-based abstract machine
- Supports object-oriented features: classes, methods, etc.
- Stack for intermediate results of expression evaluations
- Registers for source-level local variables and method parameters
- Both part of method activation record (and thus preserved across method calls)
- Method entry point specifies required number of registers (m_r) and stack slots (m_s; for memory allocation)
- (Most) instructions are typed

Correctness of Bytecode

Conditions to ensure proper operation:

Type correctness: arguments of instructions always of expected type No stack over-/underflow: never push to full stack or pop from empty stack

Code containment: PC must always point into the method code Register initialization: load from non-parameter register only after store Object initialization: constructor must be invoked before using class instance

Access control: operations must respect visibility modifiers (private/protected/public)

Options:

- dynamic checking at execution time ("defensive JVM approach")
 - expensive, slows down execution
- static checking at loading time (here)
 - verified code executable at full speed without extra dynamic checks

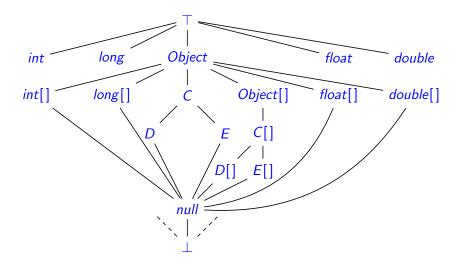
Summary: dataflow analysis applied to type-level abstract interpretation of JVM

- **(**) Association of type information with register and stack contents
 - set of types forms a complete lattice
- Simulation of execution of instructions at type level
- Solution Use dataflow analysis to cover all concrete executions
- Modularity: analysis proceeds method per method

(see X. Leroy: Java Bytecode Verification: Algorithms and Formalizations, Journal of Automated Reasoning 30(3-4), 2003, 235–269)

The Subtyping Relation (excerpt)

(C, D, E user-defined classes; D, E extending C)



The Type-Level Abstract Interpreter I

- Idea: execute JVM instructions on types (rather than concrete values)
 - stack type $S \in Typ^{\leq m_s}$ (top to the left)
 - register type $R: \{0, \ldots, m_r 1\} \rightarrow Typ$
- Represented as transition relation

$$i:(S,R)\rightarrow(S',R')$$

where

- *i*: current instruction
- (S, R): stack/register type before execution
- (S', R'): stack/register type after execution
- Errors (type mismatch, stack over-/underflow, ...) denoted by absence of transition

The Type-Level Abstract Interpreter II

Some transition rules:

<pre>iconst_z :</pre>	$(S, R) \rightarrow (int.S)$	$(5, R) \qquad \text{if } S < m_s$
aconst_null:	(S,R) ightarrow (null.	(S, R) if $ S < m_s$
iadd:	$(int.int.S, R) \rightarrow (int.S)$	5, R)
<pre>if_icmpeq /:</pre>	$(int.int.S, R) \rightarrow (S, R)$)
iload <i>n</i> :	(S,R) ightarrow (int.S)	5, R)
	if $0 \le n < n$	$< m_r, R(n) = int, S < m_s$
aload <i>n</i> :	(S,R) ightarrow (R(n))	
	$ \text{ if } 0 \leq n < m_r, \\$	$R(n) \sqsubseteq_t Object, S < m_s$
istore <i>n</i> :	(int.S,R) ightarrow (S,R)	$[n \mapsto int])$ if $0 \le n < m_r$
astore <i>n</i> :	(au.S,R) o (S,R)	$[n \mapsto \tau])$
	it	f $0 \leq n < m_r, \tau \sqsubseteq_t Object$
getfield C f $ au$:	(D.S,R) ightarrow (au.S,	$R) \qquad \qquad \text{if } D \sqsubseteq_t C$
putfield C f τ :	(au'.D.S,R) ightarrow (S,R))
		if $\tau' \sqsubseteq_t \tau, D \sqsubseteq_t C$
invoke C M σ :	$(au'_n \dots au'_1 \cdot au' \cdot S, R) o (au_0 \cdot S)$, R)
	if $\sigma = \tau_0(\tau_1, \ldots, \tau_n), \tau'_i \sqsubseteq$	$t_t \tau_i$ for $1 \le i \le n, \tau' \sqsubseteq_t C$
RINTHAACHEN	Static Program Analysis	Winter Semester 2014/15 10.9

Lemma

- (Typ, \sqsubseteq_t) is a complete lattice satisfying ACC.
- ② (Determinacy) The transitions of the abstract interpreter define a partial function: If $i : (S, R) → (S_1, R_1)$ and $i : (S, R) → (S_2, R_2)$, then $S_1 = S_2$ and $R_1 = R_2$.
- Soundness) If i : (S, R) → (S', R'), then for all concrete states (s, r) matching (S, R), the defensive JVM will not stop with a run-time type exception when applying i to (s, r) (but rather change to some (s', r') matching (S', R')).

Proof.

see X. Leroy: Java Bytecode Verification: Algorithms and Formalizations

Recap: The Java Virtual Machine

2 The Dataflow Analysis

3 Examples of Bytecode Verification

The Dataflow System I

The dataflow system $S = (Lab, E, F, (D, \sqsubseteq), \iota, \varphi)$ for a method M:

- Labels Lab := {line numbers of Java bytecode}
- Extremal label $E := \{1\}$ (forward problem)
- Flow relation F: for every $l \in Lab$,

 $\begin{cases} (l,m), (l,l+1) \in F & \text{if } l: \text{ conditional jump to } m \\ (l,m) \in F & \text{if } l: \text{ unconditional jump to } m \\ - & \text{if } l: \text{ return instruction} \\ (l,l+1) & \text{otherwise} \end{cases}$

• Complete lattice (D, \sqsubseteq) where

•
$$D := \underbrace{Typ^{\leq m_s}}_{\text{stack}} \times \underbrace{\{0, \dots, m_r - 1\} \to Typ}_{\text{registers}} \cup \{\underbrace{None}_{\text{least element untypeable}}, \underbrace{Error}_{\text{least element untypeable}}\}$$

- for every $(S, R) \in D$, None $\sqsubseteq (S, R)$ and $(S, R) \sqsubseteq$ Error • $(S_1, R_1) \sqsubseteq (S_2, R_2)$ iff
 - $S_1 = \sigma_1 \dots \sigma_n$, $S_2 = \tau_1 \dots \tau_n$ (same length!), $\sigma_i \sqsubseteq_t \tau_i$ for $1 \le i \le n$ • $R_1(i) \sqsubseteq_t R_2(i)$ for $0 \le i < m_r$

The Dataflow System II

• Extremal value

$$\iota := (\tau_n \dots \tau_1, (\underbrace{\top, \dots, \top}_{m_t \text{ times}}))$$

with parameter types τ_1, \ldots, τ_n of M

• Transfer functions $\{\varphi_I \mid I \in Lab\}$ are defined by

$$\varphi_{l}(S,R) := \begin{cases} (S',R') & \text{if } l:i \text{ and } i:(S,R) \to (S',R') \\ Error & \text{otherwise} \end{cases}$$

Monotonicity of transfer functions is ensured by the following lemma.

Lemma 10.1

If $i : (S, R) \rightarrow (S', R')$ and $(S_1, R_1) \sqsubseteq (S, R)$, then there exists $(S'_1, R'_1) \in D$ such that $i : (S_1, R_1) \rightarrow (S'_1, R'_1)$ and $(S'_1, R'_1) \sqsubseteq (S', R')$.

Proof.

see X. Leroy: Java Bytecode Verification: Algorithms and Formalizations

RWTHAACHEN

Static Program Analysis

Recap: The Java Virtual Machine

2 The Dataflow Analysis

3 Examples of Bytecode Verification

4 Further Issues in Bytecode Verification

Example of Correct Bytecode

Example 10.2

- Method declared by method static C ... (B) with $m_s = 2, m_r = 1$
- Classes B and C with $C \sqsubseteq_t B$
- B (and thus C) provides method M of type C(int), field f of type int
- Application of fixpoint iteration: on the board

Label	Instruction	Transition rule (w/o conditions)
1	astore 0	$(au.S,R) ightarrow (S,R[0\mapsto au])$
2	aload O	$(S,R) \rightarrow (R(0).S,R)$
3	iconst_1	$(S,R) \rightarrow (int.S,R)$
4	invoke B M C(int)	$(int.B.S,R) \rightarrow (C.S,R)$
5	astore O	$(\tau.S,R) \rightarrow (S,R[0 \mapsto \tau])$
6	aload O	$(S,R) \rightarrow (R(0).S,R)$
7	getfield C f int	$(C.S, R) \rightarrow (int.S, R)$
8	iconst_0	$(S, R) \rightarrow (int.S, R)$
9	if_icmpeq 2	$(int.int.S, R) \rightarrow (S, R)$
10	aload 0	$(S,R) \rightarrow (R(0).S,R)$
11	areturn	(au.S,R) ightarrow (au.S,R)
NTHAA (HEN Static Program	Analysis Winter Semester 2014/15

Example of Malicious Bytecode

Example 10.3 (cf. Example 9.4)

- Assumption: class A provides field f of type int
- Program interprets second stack entry (5) as reference to A-object and assigns first stack entry (1) to field f
- $m_s = 2, m_r = 0$
- Application of worklist algorithm: on the board

Label	Instruction	Transition rule (w/o conditions)
1	iconst_5	$(S,R) \rightarrow (int.S,R)$
2	iconst_1	$(S, R) \rightarrow (int.S, R)$
3	putfield A f int	$(int.A.S,R) \rightarrow (S,R)$
4		

Soundness of Bytecode Verifier

Theorem 10.4

If dataflow analysis yields $AI_I \neq Error$ for every $I \in Lab$, then the analyzed method will not stop with a run-time type exception when run on the JVM. Here run-time type exceptions refer to

- using instruction operands of wrong type ("Expecting to find ... on stack"),
- method return values of wrong type ("Wrong return value"),
- type-incompatible assignments to fields
 ("Incompatible type for setting field"),
- different stack sizes at the same location ("Inconsistent stack height"),
- stack overflows (i.e., more than m_s entries) ("Stack size too large"), and
- stack underflows (i.e., pop from empty stack) ("Unable to pop operand off an empty stack").

Recap: The Java Virtual Machine

- 2 The Dataflow Analysis
- 3 Examples of Bytecode Verification

4 Further Issues in Bytecode Verification

Extended Basic Blocks

- Idea: set up dataflow equations for sequences of instructions (rather than single instructions)
- Extended basic blocks: maximal sequence of instructions with
 - jump targets only at beginning
 - (conditional or unconditional) jump and return instructions only at end

Example 10.5 (cf. Example 9.3)

(12)

Bytecode Verification on Small Devices

(for details see X. Leroy: *Java Bytecode Verification: Algorithms and Formalizations*)

- Problem: bytecode verification is expensive
 - ⇒ can exceed resources of small embedded systems (mobile phones, smart cards, PDAs, ...)
- Example: Java SmartCard
 - 8-bit microprocessor
 - \approx 2 kB RAM (volatile, fast)
 - \approx 80 kB EEPROM (persistent, slow)
 - \approx 100 kB ROM (operating system)
 - \implies RAM too small to store dataflow infos

Solutions:

- Use **EEPROM** to hold verifier data structures (slow)
- Off-card verification using certificates (see following slides)
- On-card verification with off-card code transformation (see following slides)

Off-Card Verification Using Certificates

(also: "lightweight bytecode verification using certificates")

- Inspired by "proof-carrying code approach"
- Bytecode producer attaches type information to bytecode ("certificates")
- Embedded system checks well-typedness of code (rather than inferring types)
- Advantages:
 - type checking faster than inference (no fixpoint iteration)
 - $\bullet\,$ only reading access to certificates $\implies\,$ can be kept in EEPROM
- Practical limitation: certificates require $\approx 50\%$ of size of annotated code
- Implementation: Sun's K Virtual Machine (KVM)

On-Card Verification with Off-Card Transformation

- Standard bytecode verification (solving dataflow equations using fixpoint iteration) on normalized bytecode
- Bytecode restrictions:
 - only one register type shared by all control points
 - (= entry points of extended basic blocks)
 - stack empty before each jump target and after each jump instruction (= entry/exit points of extended basic blocks)
- Space complexity of bytecode verification (|Lab|/m_s/m_r = number of blocks/stack entries/registers):
 - without restriction: $O(|Lab| \cdot (m_s + m_r))$
 - with restriction: $O(m_s + m_r)$
- Restrictions ensured by off-card (i.e., compile-time) code transformation
 - stack normalizations around jumps
 - register re-allocation by graph coloring
 - can increase code size and number of used registers (but negligible on "typical" Java Card code)

