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People

Lectures:

Thomas Noll (noll@cs.rwth-aachen.de)
Christina Jansen (christina.jansen@cs.rwth-aachen.de)

Exercise classes:

Christian Dehnert (dehnert@cs.rwth-aachen.de)
Benjamin Kaminski (benjamin.kaminski@cs.rwth-aachen.de)

Student assistant:

Frederick Prinz
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Target Audience

MSc Informatik:

Theoretische Informatik

MSc Software Systems Engineering:

Theoretical Foundations
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Expectations

What you can expect:

Foundations of static analysis of computer software
Implementation and tool support
Applications in, e.g., program optimization and software validation

What we expect: basic knowledge in

Programming (essential concepts of imperative and object-oriented
programming languages and elementary programming techniques)
helpful: Theory of Programming (such as Semantics of Programming
Languages or Software Verification)
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Organization

Schedule:

Lecture Mon 14:15–15:45 AH 1 (starting October 13)
Lecture Thu 14:15–15:45 AH 2 (starting October 23)
Exercise class Mon 10:15–11:45 AH 6 (starting October 27)
see overview at http://moves.rwth-aachen.de/teaching/ws-1415/spa/

1st assignment sheet next week, presented October 27

Work on assignments in groups of two

Oral/written exam (6 credits) depending on number of participants

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes “on demand”,
rest up to you
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What Is It All About?

Static (Program) Analysis

Static analysis is a general method for automated reasoning on artefacts
such as requirements, design models, and programs.

Distinguishing features:

Static: based on source code, not on (dynamic) execution
(in contrast to testing, profiling, or run-time verification)

Automated: “push-button” technology, i.e., little user intervention
(in contrast to theorem-proving approaches)

(Main) Applications:

Optimizing compilers: exploit program properties to improve runtime or
memory efficiency of generated code
(dead code elimination, constant propagation, ...)

Software validation: verify program correctness
(bytecode verification, shape analysis, ...)
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Dream of Static Program Analysis

Program Analyzer Result

−→ −→

↑

Property specification
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Fundamental Limits

Theorem 1.1 (Theorem of Rice (1953))

All non-trivial semantic questions about programs from a universal
programming language are undecidable.

Example 1.2 (Detection of constants)

read(x);
if x > 0 then

P;
y := x;

else
y := 1;

end;
write(y);

?∼

read(x);
if x > 0 then

P;
y := x;

else
y := 1;

end;
write(1);

write(y) can be equivalently replaced by write(1)

iff program P does never terminate

Thus: constant detection is undecidable
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Two Solutions

1 Weaker models:
employ abstract models of systems

finite automata, labeled transition systems, ...

perform exact analyses

model checking, theorem proving, ...

2 Weaker analyses (here):
employ concrete models of systems

source code

perform approximate analyses

dataflow analysis, abstract interpretation, type checking, ...
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Soundness vs. Completeness

Soundness:
Predicted results must apply to every system execution
Examples:

constant detection: replacing expression by appropriate constant does
not change program results
pointer analysis: analysis finds pointer variable x 6= 0
=⇒ no run-time exception when dereferencing x

Absolutely mandatory for trustworthiness of analysis results!

Completeness:
Behavior of every system execution catched by analysis
Examples:

program always terminates =⇒ analysis must be able to detect
value of variable in [0, 255] =⇒ interval analysis finds out

Usually not guaranteed due to approximation
Degree of completeness determines quality of analysis

Correctness := Soundness ∧ Completeness
(often for logical axiomatizations and such, usually not guaranteed for
program analyses)
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Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {true, false} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) c
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Syntax of WHILE Programs

Definition 1.3 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Remarks: we assume that

the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)

the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)
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A WHILE Program

and its Flow Diagram

Example 1.4

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

x := 6 x > 0?

z := 0

v := v − 1

z := z + 1

x := x − 1y := 7

v := y

v > 0?

STOP

T

F

T

F

Effect: z := x * y = 42
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(Preliminary) Overview of Contents

1 Introduction to Program Analysis
2 Dataflow analysis (DFA)

1 Available expressions problem
2 Live variables problem
3 The DFA framework
4 Solving DFA equations
5 The meet-over-all-paths (MOP) solution
6 Case study: Java bytecode verifier

3 Abstract interpretation (AI)
1 Working principle
2 Program semantics & correctness
3 Galois connections
4 Instantiations (sign analysis, interval analysis, ...)
5 Case study: 16-bit multiplication

4 Interprocedural analysis

5 Pointer analysis
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Additional Literature

Flemming Nielson, Hanne R. Nielson, Chris Hankin: Principles of
Program Analysis, 2nd edition, Springer, 2005
[available in CS Library]

Michael I. Schwartzbach: Lecture Notes on Static Analysis
[http://www.itu.dk/people/brabrand/UFPE/
Data-Flow-Analysis/static.pdf]

Helmut Seidl, Reinhard Wilhelm, Sebastian Hack: Übersetzerbau 3:
Analyse und Transformation, Springer, 2010
[available in CS Library]
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