
Static Program Analysis
Lecture 1: Introduction to Program Analysis

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Winter Semester 2014/15

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

4 Overview of the Lecture

5 Additional Literature

Static Program Analysis Winter Semester 2014/15 1.2

People

Lectures:

Thomas Noll (noll@cs.rwth-aachen.de)
Christina Jansen (christina.jansen@cs.rwth-aachen.de)

Exercise classes:

Christian Dehnert (dehnert@cs.rwth-aachen.de)
Benjamin Kaminski (benjamin.kaminski@cs.rwth-aachen.de)

Student assistant:

Frederick Prinz

Static Program Analysis Winter Semester 2014/15 1.3

noll@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de
dehnert@cs.rwth-aachen.de
benjamin.kaminski@cs.rwth-aachen.de

Target Audience

MSc Informatik:

Theoretische Informatik

MSc Software Systems Engineering:

Theoretical Foundations

Static Program Analysis Winter Semester 2014/15 1.4

Expectations

What you can expect:

Foundations of static analysis of computer software
Implementation and tool support
Applications in, e.g., program optimization and software validation

What we expect: basic knowledge in

Programming (essential concepts of imperative and object-oriented
programming languages and elementary programming techniques)
helpful: Theory of Programming (such as Semantics of Programming
Languages or Software Verification)

Static Program Analysis Winter Semester 2014/15 1.5

Expectations

What you can expect:

Foundations of static analysis of computer software
Implementation and tool support
Applications in, e.g., program optimization and software validation

What we expect: basic knowledge in

Programming (essential concepts of imperative and object-oriented
programming languages and elementary programming techniques)
helpful: Theory of Programming (such as Semantics of Programming
Languages or Software Verification)

Static Program Analysis Winter Semester 2014/15 1.5

Organization

Schedule:

Lecture Mon 14:15–15:45 AH 1 (starting October 13)
Lecture Thu 14:15–15:45 AH 2 (starting October 23)
Exercise class Mon 10:15–11:45 AH 6 (starting October 27)
see overview at http://moves.rwth-aachen.de/teaching/ws-1415/spa/

1st assignment sheet next week, presented October 27

Work on assignments in groups of two

Oral/written exam (6 credits) depending on number of participants

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes “on demand”,
rest up to you

Static Program Analysis Winter Semester 2014/15 1.6

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Organization

Schedule:

Lecture Mon 14:15–15:45 AH 1 (starting October 13)
Lecture Thu 14:15–15:45 AH 2 (starting October 23)
Exercise class Mon 10:15–11:45 AH 6 (starting October 27)
see overview at http://moves.rwth-aachen.de/teaching/ws-1415/spa/

1st assignment sheet next week, presented October 27

Work on assignments in groups of two

Oral/written exam (6 credits) depending on number of participants

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes “on demand”,
rest up to you

Static Program Analysis Winter Semester 2014/15 1.6

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Organization

Schedule:

Lecture Mon 14:15–15:45 AH 1 (starting October 13)
Lecture Thu 14:15–15:45 AH 2 (starting October 23)
Exercise class Mon 10:15–11:45 AH 6 (starting October 27)
see overview at http://moves.rwth-aachen.de/teaching/ws-1415/spa/

1st assignment sheet next week, presented October 27

Work on assignments in groups of two

Oral/written exam (6 credits) depending on number of participants

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes “on demand”,
rest up to you

Static Program Analysis Winter Semester 2014/15 1.6

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Organization

Schedule:

Lecture Mon 14:15–15:45 AH 1 (starting October 13)
Lecture Thu 14:15–15:45 AH 2 (starting October 23)
Exercise class Mon 10:15–11:45 AH 6 (starting October 27)
see overview at http://moves.rwth-aachen.de/teaching/ws-1415/spa/

1st assignment sheet next week, presented October 27

Work on assignments in groups of two

Oral/written exam (6 credits) depending on number of participants

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes “on demand”,
rest up to you

Static Program Analysis Winter Semester 2014/15 1.6

http://moves.rwth-aachen.de/teaching/ws-1415/spa/

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

4 Overview of the Lecture

5 Additional Literature

Static Program Analysis Winter Semester 2014/15 1.7

What Is It All About?

Static (Program) Analysis

Static analysis is a general method for automated reasoning on artefacts
such as requirements, design models, and programs.

Distinguishing features:

Static: based on source code, not on (dynamic) execution
(in contrast to testing, profiling, or run-time verification)

Automated: “push-button” technology, i.e., little user intervention
(in contrast to theorem-proving approaches)

(Main) Applications:

Optimizing compilers: exploit program properties to improve runtime or
memory efficiency of generated code
(dead code elimination, constant propagation, ...)

Software validation: verify program correctness
(bytecode verification, shape analysis, ...)

Static Program Analysis Winter Semester 2014/15 1.8

What Is It All About?

Static (Program) Analysis

Static analysis is a general method for automated reasoning on artefacts
such as requirements, design models, and programs.

Distinguishing features:

Static: based on source code, not on (dynamic) execution
(in contrast to testing, profiling, or run-time verification)

Automated: “push-button” technology, i.e., little user intervention
(in contrast to theorem-proving approaches)

(Main) Applications:

Optimizing compilers: exploit program properties to improve runtime or
memory efficiency of generated code
(dead code elimination, constant propagation, ...)

Software validation: verify program correctness
(bytecode verification, shape analysis, ...)

Static Program Analysis Winter Semester 2014/15 1.8

What Is It All About?

Static (Program) Analysis

Static analysis is a general method for automated reasoning on artefacts
such as requirements, design models, and programs.

Distinguishing features:

Static: based on source code, not on (dynamic) execution
(in contrast to testing, profiling, or run-time verification)

Automated: “push-button” technology, i.e., little user intervention
(in contrast to theorem-proving approaches)

(Main) Applications:

Optimizing compilers: exploit program properties to improve runtime or
memory efficiency of generated code
(dead code elimination, constant propagation, ...)

Software validation: verify program correctness
(bytecode verification, shape analysis, ...)

Static Program Analysis Winter Semester 2014/15 1.8

Dream of Static Program Analysis

Program Analyzer Result

−→ −→

↑

Property specification

Static Program Analysis Winter Semester 2014/15 1.9

Fundamental Limits

Theorem 1.1 (Theorem of Rice (1953))

All non-trivial semantic questions about programs from a universal
programming language are undecidable.

Example 1.2 (Detection of constants)

read(x);
if x > 0 then

P;
y := x;

else
y := 1;

end;
write(y);

?∼

read(x);
if x > 0 then

P;
y := x;

else
y := 1;

end;
write(1);

write(y) can be equivalently replaced by write(1)

iff program P does never terminate

Thus: constant detection is undecidable

Static Program Analysis Winter Semester 2014/15 1.10

Fundamental Limits

Theorem 1.1 (Theorem of Rice (1953))

All non-trivial semantic questions about programs from a universal
programming language are undecidable.

Example 1.2 (Detection of constants)

read(x);
if x > 0 then

P;
y := x;

else
y := 1;

end;
write(y);

?∼

read(x);
if x > 0 then

P;
y := x;

else
y := 1;

end;
write(1);

write(y) can be equivalently replaced by write(1)

iff program P does never terminate

Thus: constant detection is undecidable

Static Program Analysis Winter Semester 2014/15 1.10

Fundamental Limits

Theorem 1.1 (Theorem of Rice (1953))

All non-trivial semantic questions about programs from a universal
programming language are undecidable.

Example 1.2 (Detection of constants)

read(x);
if x > 0 then

P;
y := x;

else
y := 1;

end;
write(y);

?∼

read(x);
if x > 0 then

P;
y := x;

else
y := 1;

end;
write(1);

write(y) can be equivalently replaced by write(1)

iff program P does never terminate

Thus: constant detection is undecidable
Static Program Analysis Winter Semester 2014/15 1.10

Two Solutions

1 Weaker models:
employ abstract models of systems

finite automata, labeled transition systems, ...

perform exact analyses

model checking, theorem proving, ...

2 Weaker analyses (here):
employ concrete models of systems

source code

perform approximate analyses

dataflow analysis, abstract interpretation, type checking, ...

Static Program Analysis Winter Semester 2014/15 1.11

Two Solutions

1 Weaker models:
employ abstract models of systems

finite automata, labeled transition systems, ...

perform exact analyses

model checking, theorem proving, ...

2 Weaker analyses (here):
employ concrete models of systems

source code

perform approximate analyses

dataflow analysis, abstract interpretation, type checking, ...

Static Program Analysis Winter Semester 2014/15 1.11

Soundness vs. Completeness

Soundness:
Predicted results must apply to every system execution
Examples:

constant detection: replacing expression by appropriate constant does
not change program results
pointer analysis: analysis finds pointer variable x 6= 0
=⇒ no run-time exception when dereferencing x

Absolutely mandatory for trustworthiness of analysis results!

Completeness:
Behavior of every system execution catched by analysis
Examples:

program always terminates =⇒ analysis must be able to detect
value of variable in [0, 255] =⇒ interval analysis finds out

Usually not guaranteed due to approximation
Degree of completeness determines quality of analysis

Correctness := Soundness ∧ Completeness
(often for logical axiomatizations and such, usually not guaranteed for
program analyses)

Static Program Analysis Winter Semester 2014/15 1.12

Soundness vs. Completeness

Soundness:
Predicted results must apply to every system execution
Examples:

constant detection: replacing expression by appropriate constant does
not change program results
pointer analysis: analysis finds pointer variable x 6= 0
=⇒ no run-time exception when dereferencing x

Absolutely mandatory for trustworthiness of analysis results!

Completeness:
Behavior of every system execution catched by analysis
Examples:

program always terminates =⇒ analysis must be able to detect
value of variable in [0, 255] =⇒ interval analysis finds out

Usually not guaranteed due to approximation
Degree of completeness determines quality of analysis

Correctness := Soundness ∧ Completeness
(often for logical axiomatizations and such, usually not guaranteed for
program analyses)

Static Program Analysis Winter Semester 2014/15 1.12

Soundness vs. Completeness

Soundness:
Predicted results must apply to every system execution
Examples:

constant detection: replacing expression by appropriate constant does
not change program results
pointer analysis: analysis finds pointer variable x 6= 0
=⇒ no run-time exception when dereferencing x

Absolutely mandatory for trustworthiness of analysis results!

Completeness:
Behavior of every system execution catched by analysis
Examples:

program always terminates =⇒ analysis must be able to detect
value of variable in [0, 255] =⇒ interval analysis finds out

Usually not guaranteed due to approximation
Degree of completeness determines quality of analysis

Correctness := Soundness ∧ Completeness
(often for logical axiomatizations and such, usually not guaranteed for
program analyses)

Static Program Analysis Winter Semester 2014/15 1.12

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

4 Overview of the Lecture

5 Additional Literature

Static Program Analysis Winter Semester 2014/15 1.13

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {true, false} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) c

Static Program Analysis Winter Semester 2014/15 1.14

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {true, false} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) c

Static Program Analysis Winter Semester 2014/15 1.14

Syntax of WHILE Programs

Definition 1.3 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Remarks: we assume that

the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)

the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

Static Program Analysis Winter Semester 2014/15 1.15

Syntax of WHILE Programs

Definition 1.3 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1∧b2 | b1∨b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Remarks: we assume that

the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)

the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

Static Program Analysis Winter Semester 2014/15 1.15

A WHILE Program

and its Flow Diagram

Example 1.4

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

x := 6 x > 0?

z := 0

v := v − 1

z := z + 1

x := x − 1y := 7

v := y

v > 0?

STOP

T

F

T

F

Effect: z := x * y = 42

Static Program Analysis Winter Semester 2014/15 1.16

A WHILE Program and its Flow Diagram

Example 1.4

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

x := 6 x > 0?

z := 0

v := v − 1

z := z + 1

x := x − 1y := 7

v := y

v > 0?

STOP

T

F

T

F

Effect: z := x * y = 42

Static Program Analysis Winter Semester 2014/15 1.16

A WHILE Program and its Flow Diagram

Example 1.4

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

x := 6 x > 0?

z := 0

v := v − 1

z := z + 1

x := x − 1y := 7

v := y

v > 0?

STOP

T

F

T

F

Effect: z := x * y = 42

Static Program Analysis Winter Semester 2014/15 1.16

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

4 Overview of the Lecture

5 Additional Literature

Static Program Analysis Winter Semester 2014/15 1.17

(Preliminary) Overview of Contents

1 Introduction to Program Analysis
2 Dataflow analysis (DFA)

1 Available expressions problem
2 Live variables problem
3 The DFA framework
4 Solving DFA equations
5 The meet-over-all-paths (MOP) solution
6 Case study: Java bytecode verifier

3 Abstract interpretation (AI)
1 Working principle
2 Program semantics & correctness
3 Galois connections
4 Instantiations (sign analysis, interval analysis, ...)
5 Case study: 16-bit multiplication

4 Interprocedural analysis

5 Pointer analysis

Static Program Analysis Winter Semester 2014/15 1.18

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

4 Overview of the Lecture

5 Additional Literature

Static Program Analysis Winter Semester 2014/15 1.19

Additional Literature

Flemming Nielson, Hanne R. Nielson, Chris Hankin: Principles of
Program Analysis, 2nd edition, Springer, 2005
[available in CS Library]

Michael I. Schwartzbach: Lecture Notes on Static Analysis
[http://www.itu.dk/people/brabrand/UFPE/
Data-Flow-Analysis/static.pdf]

Helmut Seidl, Reinhard Wilhelm, Sebastian Hack: Übersetzerbau 3:
Analyse und Transformation, Springer, 2010
[available in CS Library]

Static Program Analysis Winter Semester 2014/15 1.20

http://www.itu.dk/people/brabrand/UFPE/Data-Flow-Analysis/static.pdf
http://www.itu.dk/people/brabrand/UFPE/Data-Flow-Analysis/static.pdf

	Preliminaries
	Introduction
	The Imperative Model Language WHILE
	Overview of the Lecture
	Additional Literature

