Prof. Dr. Thomas Noll

Christian Dehnert, Benjamin Kaminski

Exercise 1 (Operational Semantics of WHILE):

Prove that the execution relation as presented in the lecture is deterministic. (Note that a (mathematical) function is deterministic by definition.)

Exercise 2 (Abstract Transition System):

For a single integer, modulo abstraction is defined by the mapping $\mathbb{Z} \to \{0, ..., n-1\} : z \mapsto (z \mod n)$ for some fixed $n \ge 1$.

- a) Give the definition of the corresponding abstraction and concretization functions operating on sets of integers, and show that they form a Galois connection.
- **b)** Extract the functions $+_n^{\sharp}$, $*_n^{\sharp}$, $(\mod m)_n^{\sharp}$ and relations $=_n^{\sharp}$, $>_n^{\sharp}$ as safe approximations of +, *, mod m, = and >.
- c) Depict the reachable fragment of the abstract transition system for the following WHILE-program for the modulo abstraction with n = 4.

```
x := 3 * x;
while (\neg(x \mod 4 = 0))

if (x \mod 4 = 1)

x := 3 * x;

x := x + 1;
```

Exercise 3 (Galois Insertions):

(4 Points)

(2 Points)

(4 Points)

In every Galois connection we considered so far we observed the special case that $\alpha(\gamma(m)) = m$. These Galois connections are referred to as *Galois insertions*:

 (α, γ) is a Galois insertion between the complete lattices L and M if and only if:

 $\alpha: L \to M$ and $\gamma: M \to L$ are monotone functions

that satisfy:

$$\begin{array}{cccc} \gamma(\alpha(l)) & \sqsupseteq & l & \forall \, l \in L \\ \alpha(\gamma(m)) & = & m & \forall \, m \in M \end{array}$$

Show that for a Galois connection (α, γ) between L and M the following claims are equivalent:

- (i) (α, γ) is a Galois insertion
- (ii) γ is injective
- (iii) α is surjective
- (iv) $\forall m_1, m_2 : m_1 \sqsubseteq m_2 \Leftrightarrow \gamma(m_1) \sqsubseteq \gamma(m_2)$