Prof. Dr. Thomas Noll

Christian Dehnert, Benjamin Kaminski

Exercise 1 (Extending the Java Analysis with Array Operations): (3 Points)

In this exercise we will extend the JVM instructions given in the lecture by the following instructions.

- aaload, pops reference to an array a and an integer i from stack and pushes a reference to the i-th entry
 of a
- aastore, pops reference to an array a, and integer i and a reference to an object o from stack and assigns o to the i-th enty of a
- ullet newarray au, pops an integer count and pushes a reference to an array of size count and type au onto the stack
- a) Provide the transitions rules of the type-level abstract interpreter for the instructions given above.
- **b)** Perform a *type correctness* analysis for the following Java bytecode.

```
1 iconst 10
 2 istore 1
3 iload 1
4 newarray A
5 astore 2
6 iconst 1
7 istore 3
8 iload 1
9 iload 3
10 if_icmgeq 1
11
   aload 2
12 iload 3
13 aload 1
14 aastore
15 iload 3
16
   iconst 1
17
   iadd
18 istore 3
```

Exercise 2 (Galois Connections):

(3 Points)

Let $\Sigma = \{a, b, c\}$, Σ^* be the set of finite words over the alphabet Σ and \preceq be the prefix relation on Σ^* , i.e. $w \preceq v$ if and only if w is a prefix of v. Let $v \sqsubseteq_{\Sigma} w \Leftrightarrow w \preceq v$.

- a) Prove or disprove that $(\Sigma^*, \sqsubseteq_{\Sigma})$ is a complete lattice.
- **b)** Consider $L = (2^{\Sigma^*}, \subseteq)$ and $M = (\Sigma^* \cup \{\bot\}, \sqsubseteq_M)$ where

(i) $v \sqsubseteq_M w$ if $w \preceq v$ and $v, w \in \Sigma^*$ and (ii) $\bot \sqsubseteq_M v$ for all $v \in M$.

Define a Galois connection (α, γ) , $\alpha \colon L \to M$, $\gamma \colon M \to L$ between the two complete lattices L and M such that the image of α is infinite and prove that (α, γ) is indeed a Galois connection.

Exercise 3 (Properties of Galois Connections):

(4 Points)

Let (L, \sqsubseteq_L) and (M, \sqsubseteq_M) be complete lattices with \bot_K be the least element of lattice K. Further let (α, γ) be a Galois connection with $\alpha: L \to M$ and $\gamma: M \to L$. Prove or disprove the following statements.

- **a)** $\alpha(\perp_L) = \perp_M$
- **b)** $\gamma(\perp_M) = \perp_L$
- c) $\alpha \circ \gamma \circ \alpha = \alpha$
- **d)** $\gamma \circ \alpha \circ \gamma = \gamma$