Prof. Dr. Thomas Noll

Christian Dehnert, Benjamin Kaminski

Exercise 1 (Partial Orders):

Consider the relation $\sqsubseteq \subseteq \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ defined as

 $(a, b) \sqsubseteq (a', b') :\iff a \cdot b' \le a' \cdot b$.

Prove or disprove: $(\mathbb{R}_{\geq 0}\times\mathbb{R}_{\geq 0},\sqsubseteq)$ is a partial order.

Exercise 2 (Complete Lattices):

Let (D, \sqsubseteq) be a complete lattice and let $\preceq \subseteq D \times D$ be defined as

$$d \preceq d' : \iff d' \sqsubseteq d$$
 .

- **a)** Prove that (D, \preceq) is a complete lattice!
- **b)** Let $S \subseteq D$ and let further $\sqcup_{\sqsubseteq} S$ denote the least upper bound of S with respect to the order \sqsubseteq and let $\sqcap_{\preceq} S$ denote the greatest lower bound of S with respect to the order \preceq . Prove or disprove:

$$\forall S \subseteq D \colon \sqcup_{\sqsubseteq} S = \sqcap_{\preceq} S$$

c) Let \perp_{\sqsubseteq} denote the least element of D with respect to the order \sqsubseteq and let \top_{\preceq} denote the greatest element of D with respect to the order \preceq . Prove or disprove:

$$\bot_{\sqsubset}=\top_{\prec}$$

Exercise 3 (Monotinicity):

Let (D, \sqsubseteq) be a complete lattice. We say that a function $f: D \rightarrow D$ is *supremum preserving* if for every ascending chain S we have that

$$f(\sqcup S) = \sqcup \{f(d) \mid d \in S\}$$

- a) Prove or disprove: Every supremum preserving function is monotonic.
- **b)** Prove or disprove: Every monotonic function is supremum preserving.

(2 Points)

(1 + 1.5 + 1.5 Points)

(2 + 2 Points)