Theorem 2. *L* is safely realizable iff *L* is weakly closed under \models and closed under \models^{df} .

- \implies . Assume L is safely realizable. Then:
 - 1. *L* is realizable, and by the previous theorem, *L* is closed under \models , and thus *L* is weakly closed under \models .
 - 2. There exists a deadlock-free weak CFM A with Lin(A) = L. As A is weak and deadlock-free, it follows that Lin(A) = L is closed under \models^{df} .

Claim: A is deadlock-free and Lin(A) = L. Obviously, then L is safely realizable. The proof of this claim goes as follows:

- 1. Lin(A) = L. This is proven by:
 - ⊇ . Let $w \in L$. Then, for every process $p, w \upharpoonright p \in L_p$. Thus, DFA A_p has an accepting run for $w \upharpoonright p$ and as $F = \prod_{p \in P} F_p$, CFM A has an accepting run for w. So, $w \in Lin(A)$.
 - \subseteq . Let $w \in Lin(A)$. As every word in Lin(A) is well-formed, w is well-formed. Since $F = \prod_{p \in P} F_p$, $w \upharpoonright p \in L_p$ for each process p. Thus $L \models w$. Since L is weakly closed under \models , it holds $w \in L$.
- 2. A is deadlock-free. This is proven as follows. Assume A has successfully read the input word $w \in Act^*$. The word w may be either accepted or not. If it is accepted, there is nothing to prove. Assume w is not accepted. As A has successfully read w, for every process $p, w \upharpoonright p$ is a prefix of a word in L_p . Since L is closed under \models^{df} , it follows that $w \in pref(L)$. Let $w.u \in L$ for $u \neq \epsilon$. As A_p is deterministic, it has a unique (local) accepting run for $w.u \upharpoonright p$. This applies to every process p. As $F = \prod_{p \in P} F_p$, it follows that CFM A has a unique accepting run for w.u. As this applies to every input word w, A is deadlock-free.