Theorem 2. L is safely realizable iff L is weakly closed under \models and closed under $\models^{d f}$.
\Longrightarrow. Assume L is safely realizable. Then:

1. L is realizable, and by the previous theorem, L is closed under \models, and thus L is weakly closed under \models.
2. There exists a deadlock-free weak CFM A with $\operatorname{Lin}(A)=L$. As A is weak and deadlock-free, it follows that $\operatorname{Lin}(A)=L$ is closed under $\models^{d f}$.
\Longleftarrow. Assume L is weakly closed under \models and closed under $\models^{d f}$. Let $L_{p}=$ $\{w \upharpoonright p \mid w \in L\}$ for any process $p \in P$. Since L is finite, L_{p} is regular. Let DFA A_{p} (with state set Q_{p}, initial state $s_{i n i t}^{p}$ and set F_{p} of accepting states) be such that $L\left(A_{p}\right)=L_{p}$. W.l.o.g. we assume that all states in A_{p} are productive, i.e., for any state q in A_{p} it is possible to reach a state in F_{p}. Now consider the weak CFM: $A=\left(\left(A_{p}\right)_{p \in P}, s_{i n i t}, F\right)$ with: $s_{\text {init }}=\prod_{p \in P} s_{\text {init }}^{p}$, thus $s_{\text {init }}=\left(s_{\text {init }}^{p_{1}}, \ldots, s_{\text {init }}^{p_{n}}\right), F=\prod_{p \in P} F_{p}$ with $F_{p} \subseteq Q_{p}$.

Claim: A is deadlock-free and $\operatorname{Lin}(A)=L$. Obviously, then L is safely realizable. The proof of this claim goes as follows:

1. $\operatorname{Lin}(A)=L$. This is proven by:
\supseteq. Let $w \in L$. Then, for every process $p, w \upharpoonright p \in L_{p}$. Thus, DFA A_{p} has an accepting run for $w \upharpoonright p$ and as $F=\prod_{p \in P} F_{p}$, CFM A has an accepting run for w. So, $w \in \operatorname{Lin}(A)$.
\subseteq. Let $w \in \operatorname{Lin}(A)$. As every word in $\operatorname{Lin}(A)$ is well-formed, w is well-formed. Since $F=\prod_{p \in P} F_{p}, w \upharpoonright p \in L_{p}$ for each process p. Thus $L \models w$. Since L is weakly closed under \models, it holds $w \in L$.
2. A is deadlock-free. This is proven as follows. Assume A has successfully read the input word $w \in$ Act* *. The word w may be either accepted or not. If it is accepted, there is nothing to prove. Assume w is not accepted. As A has successfully read w, for every process $p, w \upharpoonright p$ is a prefix of a word in L_{p}. Since L is closed under $\models^{d f}$, it follows that $w \in \operatorname{pref}(L)$. Let $w . u \in L$ for $u \neq \epsilon$. As A_{p} is deterministic, it has a unique (local) accepting run for $w . u \upharpoonright p$. This applies to every process p. As $F=\prod_{p \in P} F_{p}$, it follows that CFM A has a unique accepting run for $w . u$. As this applies to every input word w, A is deadlock-free.
