

Joost-Pieter Katoen Theoretical Foundations of the UML

Theoretical Foundations of the UML Lecture 3: Races

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1415/uml/

20. Oktober 2014

Joost-Pieter Katoen Theoretical Foundations of the UML

Summary of Lecture #2

- A Message Sequence Chart is a partial order
 - between send and receive events
 - totally ordered per process
 - receive events happen after their send events
 - respecting the first-in first out (FIFO) property

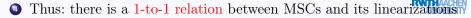
vertical ordering horizontal ordering

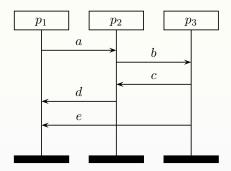
2 Linearizations are totally ordered extensions of partial orders

- all linearizations of an MSC are well-formed
 - every receive is preceded by a corresponding send
 - **2** respects the FIFO ordering
 - **③** no send events without corresponding receive

S Every well-formed word can be transformed into an MSC

• two linearizations of the same MSC yield isomorphic MSCs





These pictures are formalized using partial orders.

Message Sequence Chart (MSC) (1)

Definition

An MSC $M = (\mathcal{P}, \mathcal{E}, \mathcal{C}, l, m, \preceq)$ with:

- \mathcal{P} , a finite set of processes $\{p_1, p_2, \ldots, p_n\}$ with n > 1
- E, a finite set of events

$$E = \biguplus_{p \in \mathcal{P}} E_p = E_? \cup E_!$$

- \mathcal{C} , a finite set of message contents
- $l: E \to Act$, a labelling function defined by:

$$l(e) = \begin{cases} !(p,q,a) & \text{if } e \in E_p \cap E_! \\ ?(p,q,a) & \text{if } e \in E_p \cap E_? \end{cases}, \text{ for } p \neq q \in \mathcal{P}, a \in \mathcal{C} \end{cases}$$

UNIVERSITY

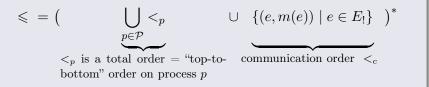
Message Sequence Chart (MSC) (2)

Definition

• $m: E_! \to E_?$ a bijection ("matching function"), satisfying:

$$m(e) = e' \wedge l(e) = !(p,q,a) \text{ implies } l(e') = ?(q,p,a) \ (p \neq q, \ a \in \mathcal{C})$$

• $\leq \subseteq E \times E$ is a partial order ("visual order") defined by:

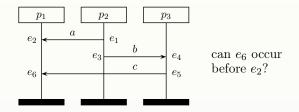


where for relation R, R^* denotes its reflexive and transitive closure.

Example

Joost-Pieter Katoen Theoretical Foundations of the UML

Visual order can be misleading



If message b takes much shorter than message a, then c might arrive at p_1 before a.

In practice, e_6 might occur before e_2 , but $e_2 <_{p_1} e_6$ and thus $e_2 \preceq e_6$. This is misleading and called a race. A race condition asserts a particular order of events will occur because of the visual ordering (i.e., the partial order \preceq) when, in practice, this order cannot be guaranteed to hold.

Q: When are race conditions possible and how to detect them?

Causal order

Main principles:

- Send events should happen before their matching receive events
- The ordering of events wrt. sends on same process is unaffected
- Receive events on a process sent from the same process are ordered as their sends

Definition

For MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, relation $\ll \subseteq E \times E$ is defined by: $e \ll e'$ iff e' = m(e)or $e <_p e'$ and $E_! \cap \{e, e'\} \neq \varnothing$ or $e, e' \in E_p \cap E_?$ and $m^{-1}(e) <_q m^{-1}(e')$

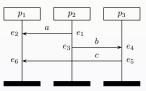
 \ll^* is a partial order (referred to as causal order) in which events at the same process are not necessarily ordered.

Causal order: example

Definition

For MSC $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$, relation $\ll \subseteq E \times E$ is defined by:

$$e \ll e' \quad \text{iff} \quad e' = m(e) \\ \text{or} \quad e <_p e' \text{ and } E_! \cap \{e, e'\} \neq \emptyset \\ \text{or} \quad e, e' \in E_p \cap E_? \text{ and } m^{-1}(e) <_q m^{-1}(e')$$



Example $e_1 \ll e_2, e_3 \ll e_4, e_5 \ll e_6, e_1 \ll e_3, e_4 \ll e_5, \text{not } (e_2 \ll e_6)$

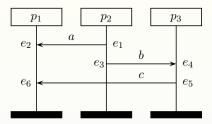
Definition

MSC M contains a race if for some $e, e' \in E_?$ and process p:

$$e <_p e'$$
 but not $(e \ll^* e')$

where $\ll^* \subseteq E \times E$ is the reflexive and transitive closure of \ll .

Race: example



Visual order versus causal order

 $\begin{array}{l} \bullet e_1 \leq e_2, \ e_3 \leq e_4, \ e_5 \leq e_6, \ e_1 \leq e_3, \ e_4 \leq e_5, \ e_2 \leq e_6 \\ \\ \bullet e_1 \ll e_2, \ e_3 \ll e_4, \ e_5 \ll e_6, \ e_1 \ll e_3, \ e_4 \ll e_5, \ \text{not} \ (e_2 \ll e_6) \end{array}$

As $\ll^* \not\subseteq \preceq$, this MSC contains a race.

Other examples

Joost-Pieter Katoen Theoretical Foundations of the UML

14/23

Recall: MSC M has a race if $\preceq \not\subseteq \ll^*$ or equivalently:

$$\exists e, e' \in E_? \ . \ (e <_p e' \text{ and } e \not\ll^* e')$$

Whenever $\preceq \not\subseteq \ll^*,$ implementations based on $<_p$ may cause problems:

- **1** unspecified message reception
 - a process receives a message which by the MSC is not possible
- 2 deadlocks
 - a process blocking on receipt of an unexpected message may block others too
- In message loss
 - unexpectedly received messages may be ignored
- exploiting wrong message content

Checking whether an MSC has a race

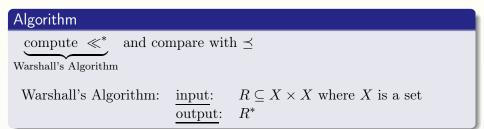
- MSC *M* has a race if $\preceq \not\subseteq \ll^*$
- How to check whether MSC M has a race?

compute \ll^* and check whether $\preceq \subseteq \ll^*$

- transitive closure \ll^* is computed using Floyd-Warshall's algorithm
 - algorithm for finding shortest paths in a weighted digraph with positive or negative edge weights¹
 - easily adapted for computing the transitive closure of digraphs
 - worst-case time complexity $\mathcal{O}(|E|^3)$
 - by using some specifics of MSC, this is reduced to $\mathcal{O}(|E|^2)$
- So: race checking can be done quadratically in the number of events

¹for digraphs without negative cycles.

Computing \ll^* : Warshall's algorithm



Idea:

Consider R and R^* as directed graphs

There is an edge $x \Rightarrow y$ in R^* iff there is a (possibly empty) sequence

$$x = x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_n = y$$
 in R

(our setting: $X = E, R = \ll, R^* = \ll^*$)

Warshall's algorithm: preliminaries

- assume: graph vertices are numbered $\{1, 2, \dots, n\}$ where n = |E|
- for j ∈ {1,...,n+1} define relation ⇒ as follows:
 x ⇒ y iff ∃ path in R from x to y such that all vertices on the path (≠ x, y) have a smaller number than j
- Then: (1) $x \Longrightarrow y$ iff $x \xrightarrow{n+1} y$ (2) $x \xrightarrow{1} y$ iff x = y or $x \ll y$ (3) $x \xrightarrow{y+1} z$ iff $x \xrightarrow{y} z$ or $x \xrightarrow{y} y \xrightarrow{y} z$
- Algorithm: determine the relations ¹→,..., ⁿ→, ⁿ⁺¹→ iteratively using properties (2) + (3); Result is then given by (1).
- Store $\stackrel{i}{\Longrightarrow}$ in a boolean matrix C
- Postcondition: C[x, y] =true iff $(x, y) \in R^*$
- \bullet Precondition: $\forall x,y \in X \;.\; C[x,y] = \texttt{false}$

Warshall's algorithm

/* first compute $x \stackrel{1}{\Longrightarrow} y$ for x := 1 to n do for y := 1 to n do $C[x,y] := (x = y \text{ or } \underbrace{(x,y) \in R}_{x \ll y})$ /* loop invariant: after the *j*-th iteration of /* outermost loop it holds: $C[x, y] = \texttt{true} \text{ iff } x \stackrel{j+1}{\Longrightarrow} y$ for y := 1 to n do for x := 1 to n do if C[x, y] then for z := 1 to n do if C[y, z] then C[x,z] := true

Lemma: correctness

After j iterations: $x \stackrel{j+1}{\Longrightarrow} y$ iff C[x, y] =true.

Proof:

if: trivial; *only if*: by induction on j.

Complexity

Worst-case time complexity of Warshall's algorithm : $\mathcal{O}(|n|^3)$ with n = |X|

Proof:

follows from the facts that there is a triple-nested loop of which each loop has at most n iterations.

or where a normal f

Warshall's algorithm computes R^* for every binary relation $R \subseteq X \times X$.

Recall: our interest is in determining R^* for $R = \ll$

Using some properties of \ll the complexity can be improved.

Exploit that for \ll :

- \bigcirc « is acyclic (as it is a partial order)
- ② number of immediate predecessors of $e \in E$ under ≪ is at most two

Recall that e is an immediate predecessor of e' (under \ll) if:

$$e \ll e'$$
 and $\neg (\exists e'' \notin \{e, e'\})$. $e \ll e'' \land e'' \ll e'$

(whv?)

Efficiency improvement

[Alur et al. '96]

The main loop of Warshall's algorithm:

for
$$e := 1$$
 to n do
for $e' := 1$ to n do
if $C[e', e]$ then
for $e'' := 1$ to n do
if $C[e, e'']$ then
 $C[e', e''] := \texttt{true}$

The main loop of Alur *et. al.*'s algorithm for detecting races in MSCs: for e := 1 to n do for e' := e - 1 downto 1 do if (not C[e', e] and $e' \ll e$) then C[e', e] :=true for e'' := 1 to e' - 1 do if C[e'', e'] then

R

C[e'',e] := true

Theorem

Let M be an MSC with set E of events and n = |E|. Checking whether M has a race can be done in $\mathcal{O}(n^2)$.

Proof:

Since \ll is acyclic, we number the events such that the numbering defines a total order that is consistent with visual order \preceq . This can be done in $\mathcal{O}(n)$ using a standard topological sort. Then observe that the innermost loop:

for
$$e'' := 1$$
 to $e' - 1$ do
if $C[e'', e']$ then $C[e'', e] := \texttt{true}$

of the triple-nested main loop is executed for (e, e') only if e' is an immediate predecessor of e under \ll . As for MSCs, an event can have at most two immediate predecessors, the innermost loop is executed at most $2 \cdot n$ times. This yields a total worst-case time complexity of $n^2+2 \cdot n$.