Souymodip Chakraborty, Hao Wu

Modellierung und Verifikation von Software

Lehrstuhl für Informatik 2

– Assignment 7 –

Exercise 1

Let MSG G be given as follows:

- 1. <u>Check</u> whether *G* is locally communication-closed;
- 2. <u>Find</u> a CFM A, such that L(A) = L(G).

Exercise 2

Let A be a CFM on alphabet Act and $\sim_{A} \in Act^* \times Act^*$ be an equivalence relation defined by:

 $w \sim_{\mathcal{A}} v \quad iff \quad \forall \ u \in Act^* : w \cdot u \in L(\mathcal{A}) \iff v \cdot u \in L(\mathcal{A}).$

<u>Prove that</u>, the quotient set of equivalence classes Act^*/\sim_A is finite *iff* CFM A is \forall -bounded.

Exercise 3

Given a set of MSCs $\mathcal{M} = \{M_1, \ldots, M_n\}$, an MSC M is said to be implied by \mathcal{M} if for every process $p \in \mathcal{P}$, there is an MSC $M' \in \mathcal{M}$ such that $M' \downarrow_p = M \downarrow_p$. The closure of \mathcal{M} is then defined as:

 $CI(\mathcal{M}) := \{ M \mid M \text{ is implied by } \mathcal{M} \}.$

Prove or disprove: if \mathcal{M} is \forall -bounded¹, then its closure $CI(\mathcal{M})$ is also \forall -bounded.

1

(4 points)

(3 points)

(3 points)

¹A set of MSCs is said to be \forall -bounded, if every MSC in it is \forall -bounded.