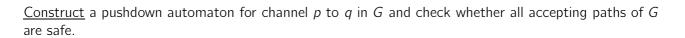


Prof. Dr. Ir. Joost-Pieter Katoen

– Assignment 4 –

Formally prove or disprove the correctness of the following statements for CMSGs:

(here, $M_i \in \mathbb{CM}$, $i \in \{1, 2, 3\}$; | stands for *choice*, • for *(weak) concatenation*, and * for *iteration*)


1.
$$(M_1 \bullet M_2)|M_3 = (M_1|M_3) \bullet (M_2|M_3)$$

2.
$$(M_1|M_2) \bullet M_3 = (M_1 \bullet M_3)|(M_2 \bullet M_3)$$

3.
$$M_1^* | M_2^* = (M_1 | M_2)^*$$

Exercise 2

Given a **CMSG** *G* as follows:

Exercise 3

Given an MSC M with n events and k processes and an automaton A of size m (i.e. the number of states is m).

<u>Prove that</u>: the decision problem whether a $L(M) \cap L(A) = \emptyset$ can be solved in time $\mathcal{O}(m \cdot n^k)$, and is coNP-complete.

G : M_1 Mз Mэ M_1 : M_2 : M_3 : р q p q p а a n h 9 O PC n C

Exercise 1

(3 points)

(4 points)

(3 points)