- Assignment 2 -

Exercise 1

As presented in the lecture (cf. Lecture slide 4 - p.8), the (weak) concatenation of two MSCs M_{1} and M_{2} (with $M_{i}=\left\langle\mathcal{P}_{i}, E_{i}, \mathcal{C}_{i}, \ell_{i}, m_{i},<i\right\rangle$ for $i \in\{1,2\}$) intuitively is realized by gluing the process lines together such that M_{1} is situated on top of MSC M_{2} (cf. Figure 1).

Figure 1: Two MSCs and their weak concatenation
Define the so-called strong concatenation \bullet_{s} of two MSCs M_{1} and M_{2}, i.e., all events of MSC M_{1} have to be executed before the first event of M_{2}. For this purpose determine a structure $M=M_{1} \bullet_{s} M_{2}=$ $\langle\mathcal{P}, E, \mathcal{C}, \ell, m,<\rangle$, that (in terms of M_{1} and M_{2}) results from concatenating the two MSCs strongly.

Exercise 2

The word language of a (possibly infinite) set of MSCs $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots\right\}$ is defined as

$$
\mathcal{L}(\mathcal{M}):=\bigcup_{M \in \mathcal{M}} \operatorname{Lin}(M) .
$$

(Compare with the definition in Lecture slide 4 - p.16).

Show that:

It is decidable whether a regular language L is in a word language for some set of MSCs, i.e., there exists \mathcal{M} such that $L \subseteq \mathcal{L}(\mathcal{M})$.
(Hint: Find a way to show that every word $w \in L$ is well-formed.)

Exercise 3

Let $w \in A c t^{*}$ be a linearization of an MSC M and $p, q \in \mathcal{P}$ be two processes in M.
The bound from p to q in w is defined as:

$$
B_{w}^{p q}:=\max _{u \text { is prefix of } w}\left(\sum_{c \in \mathcal{C}}|u|!(p, q, c)-\sum_{c \in \mathcal{C}}|u| ?(q, p, c)\right)
$$

where $|u|_{a}$ denotes the number of occurrences of action a in u. (Compare with the definition in Lecture slide $2-p .20$.) In other words, $B_{w}^{p q}$ denotes the maximum number of messages in the channel from p to q for the linearization w.
The bound B for a set of words $\mathcal{L} \subseteq A c t^{*}$ is then defined as:

$$
B:=\max _{w \in \mathcal{L}, p, q \in \mathcal{P}} B_{w}^{p q}
$$

Prove that:
If a word language of a set of $\operatorname{MSCs} \mathcal{M}$ is regular (cf. Exercise 2), then the bound B for $\mathcal{L}(\mathcal{M})$ is finite.

