Theoretical Foundations of the UML

Lecture 19: Statecharts Semantics (2)

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1415/uml/

26. Januar 2015

Joost-Pieter Katoen Theoretical Foundations of the UML 1/28

Statecharts

Definition (Statecharts)
A statechart SCis a triple (N, E, Edges) with:

O N is a set of nodes (or: states) structured in a tree

@ F is a set of events

o pseudo-event after(d) € E denotes a delay of d € R>(time units
o | & F stands for “no event available”

© Edges is a set of (hyper-) edges, defined later on.

Definition (System)

A system is described by a finite collection of statecharts

(SC1,...,SCy).

Joost-Pieter Katoen Theoretical Foundations of the UML 2/28

What does a single StateChart mean?

@ The semantics is given as a Mealy machine:
@ State = a set of nodes (“current control”) + the values of variables

@ Edge is enabled if all events are present and guard holds in current
state

@ Executing edge X eldl/Ay perform actions A, consume event e

@ leave source nodes X and switch to target nodes Y
= events are unordered, and considered as a set

@ Principle: execute as many non-conflicting edges at once

= the execution of such maximal set is a macro step o

Joost-Pieter Katoen Theoretical Foundations of the UML 3/28

States and configurations

Definition (Configuration)
A configuration of SC = (N, E, Edges) is a set C C N of nodes
satisfying:

@ root € C

o z € C and type(x) = OR implies |children(z) N C| =1

@ z € C and type(x) = AND implies children(z) C C
Let Conf denote the set of configurations of SC.

Definition (State)

State of SC = (N, E, Edges) is a triple (C,I,V') where

@ (' is a configuration of SC

@ [CV is a set of events ready to be processed

@ V is a valuation of the variables.

v
Joost-Pieter Katoen Theoretical Foundations of the UML 4/28

Enabling of an edge

Definition (Enabledness)

Edge X —<9/A, ¥ is enabled in state (C,1,V) whenever:
@ X C (,i.e. all source nodes are in configuration C
o ((Cy,...,Cn), (V1,...,V,)) Eg, ie., guard g is satisfied
configurations variable :/,aluations
@ e # | implies e € [and e = | implies [= @
Let En(C,1,V) denote the set of enabled edges in state (C,I,V).

Joost-Pieter Katoen Theoretical Foundations of the UML 5/28

Macro steps

©

On receiving an input e, several edges in SC may become enabled

©

Then, a maximal and consistent set of enabled edges is taken

©

If there are several such sets, choose one nondeterministically

©

Edges in concurrent components can be taken simultaneously

©

But edges in other components cannot; they are inconsistent

©

To resolve nondeterminism (partly), priorities are used

Joost-Pieter Katoen Theoretical Foundations of the

Least common ancestor

Definition (Least common ancestor)

For X C N, the least common ancestor, denoted Ica(X), is the node
y € N such that:

(Vze X.2<y) and Vze N.(Vze X.x<z) implies y < z.

Node y is an ancestor of any node in X (first clause), and is a
descendant of any node which is an ancestor of any node in X (second
clause).

Joost-Pieter Katoen Theoretical Foundations of the UML 7/28

Orthogonality of nodes

Definition (Orthogonality of nodes)
Nodes z,y € N are orthogonal, denoted z Ly, if

—(r<y) and —(y<z) and type(lca({z,y})) = AND.

Orthogonality captures the notion of independence. Orthogonal nodes can
execute enabled edges independently, and thus concurrently. J

Joost-Pieter Katoen Theoretical Foundations of the UML 8/28

Definition (Scope of edge)

The scope of edge X —= Y is the most nested OR-node that is an
ancestor of both X and Y.

The scope of edge X =Y is the most nested OR-node that is
unaffected by executing the edge X — Y.

Joost-Pieter Katoen Theoretical Foundations of the UML 9/28

Scope: example

1 F
t——{a}—{8]

(o) (&)

scope(A— D) =root and scope(A—C)=G and scope(A— B)=F

Joost-Pieter Katoen Theoretical Foundations of the UML 10/28

Consistency: formal definition

Definition (Consistency)

Q Edges ed, ed’ € Edges are consistent if:

ed =ed or scope(ed) L scope(ed').

© T C Edges is consistent if all edges in T" are pairwise consistent.
Cons(T) is the set of edges that are consistent with all edges in
T C Edges

Cons(T) = {ed € Edges | Ved' € T : ed is consistent with ed'}

On the black board.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/28

What is now a macro step?

A macro step is a set T" of edges such that:

@ all edges in step T are enabled

@ all edges in T are pairwise consistent, that is:

@ they are identical or
o scopes are (descendants of) different children of the same AND-node

@ enabled edge ed is not in step 7T implies

there exists ed’ € T such that ed is inconsistent with ed’, and
the priority of ed’ is not smaller than ed

@ step T is maximal (wrt. set inclusion)
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 12/28

Priorities

Priorities restrict (but do not abandon) nondeterminism between
multiple enabled edges.

Definition (Priority relation)

The priority relation < C Edges x Edges is a partial order defined for
ed,ed € Edges by:

ed < ed if scope(ed) < scope(ed)

So, ed’ has priority over ed if its scope is a descendant of ed’s scope.

Example:

| A

2 < 1 since scope(1) = D < scope(2) = root.

Joost-Pieter Katoen Theoretical Foundations of the UML

Priority: examples

ieter Katoen Theoretical Foundations of the U

Nondeterminism

Priorities rule out some nondeterminism, but not necessarily all.

Joost-Pieter Katoen Theoretical Foundations of the

What is now a macro step?

A macro step is a set T" of edges such that:

@ all edges in step T are enabled

@ all edges in T are pairwise consistent

@ they are identical or
@ scopes are (descendants of) different children of the same AND-node

@ step T is maximal (wrt. set inclusion)
@ T cannot be extended with any enabled, consistent edge

@ priorities: enabled edge ed is not in step 71" implies

Jded’ € T. (ed is inconsistent with ed’ A =(ed’ < ed))
RWTH

Joost-Pieter Katoen Theoretical Foundations of the UML 16/28

A macro step — formally

A macro step is a set T" of edges such that:
@ enabledness: T C En(C,I,V)
@ consistency: T' C Cons(T")
o maximality: En(C,I,V) N Cons(T) C T

@ priority: Ved € En(C,1,V) — T we have
(Jed' € T. (ed is inconsistent with ed’ A —(ed’ < ed)))

The first three points yield: T'= En(C, I, V) N Cons(T).

Joost-Pieter Katoen Theoretical Foundations of the UML 17/28

Computing the set T' of macro steps in state (C, I,V

function nextStep(C,1,V)

T:=0

while 7' C En(C,1,V) N Cons(T)

do let ed € High ((En(C,1,V) N Cons(T)) —T);
T:=T U {ed}

od

return 7.

where High(T) = {ed € T | ~(Jed € T.ed < ed')}

Joost-Pieter Katoen Theoretical Foundations of the UML 18/28

Correctness

For any state (C,1I,V'), nextStep(C,I,V) is a macro step.

The proof goes in two steps:

© We prove enabledness, consistency, and maximality by applying
some standard results from fixed point theory, in particular
Tarski’s-Kleene fixpoint theorem;

© Then we consider priority and use some monotonicity argument.

O

V.

Joost-Pieter Katoen Theoretical Foundations of the UML 19/28

Step execution

What happens in performing a step?

For a single statechart, executing a step results in performing the
actions of all the edges in the step, and changing “control” to the target
nodes of these edges.

Interference

Actions in statechart SC; may influence the sets of events of other
statecharts, e.g., SC; with i # j if action send i.e is performed by SC; in
a step.

Execution of steps is considered on the system (SCi,...,SC,).

Joost-Pieter Katoen Theoretical Foundations of the UML 20/28

Default completion

Definition (Default completion)

The default completion C” of some set C' of nodes is the canonical
superset of C' such that C’ is a configuration. If C’ contains an OR-node
z and children(z) N C = @ implies default(z) € C'.

| A

Example:

(N
‘ @ l © Default completion of
L

C = {root, I} is C'"=CU{D,E,F,H}
© Default completion of
C = {root,C} is C' = C U {A}.

Joost-Pieter Katoen Theoretical Foundations of the UML

Step execution by a single statechart

@ Let C; be the current configuration of statechart SC;
@ Let T; C Edges; be a step for SC;

@ The next state (C7, I}, V]) of statechart SC; is given by:

Q (] is the default completion of

U Y U{zeC;|VX =Y €Tj.~(x Iscope(X —Y))}
x—<gA s yer,

Q I/ =Up_{e|3x 92y € T send j.e € A}

0 V/(v) Vi) VX ALY € Ty0i= . ¢ A
J

val(expr) if 3X eld/A,y ¢ T;.v:=expr € A RwH

Joost-Pieter Katoen Theoretical Foundations of the UML 22/28

Mealy machines

Definition (Mealy machine)

A Mealy machine A = (Q, qo, %, T, 0, w) with:
@ (Q is a finite set of states with initial state gy € Q

@ X is the input alphabet
@ [is the output alphabet
@ §:Q x X — Q is the deterministic (input) transition function, and

0 w:Q x X — I is the output function

A Mealy machine (or: finite-state transducer) is a finite-state automaton
that produces output on a transition, based on current input and state.

Moore machines
In a Moore machine w : @ — I', output is purely state-based.

Joost-Pieter Katoen Theoretical Foundations of the UML 23/28

From statecharts to a Mealy machine (1)

A state ¢ is a tuple of the (local) states of SCy through SC,,.

Input and output events

Any input is a set of events, and any output is a set of events.

Next-state function ¢

Defines the effect of executing a step.

Output function w
Defines all events sent to some SC outside the system (SCi,...,SC,,).

Joost-Pieter Katoen Theoretical Foundations of the UML 24/28

From statecharts to a Mealy machine (2)

A state ¢ is a tuple of the (local) states of SC; through SCj.

Formally:
o Q= 1T[_,(Confy x 2Ek x Valp) is the set of states
o where Conf, is the set of configurations of SCy,

@ FJ is the set of the events of SCy,
@ and Val, is the set of variable valuations of SCj,

o qo = [1i_,(Cok, @, Valy ;) is the initial state
o where Cp ;, is the default completion of the set {root}
o the initial set of events is empty
e Valy i is the initial variable valuation of SCj,
RWIH

Joost-Pieter Katoen Theoretical Foundations of the UML 25/28

From statecharts to a Mealy machine (3)

Input and output events

Any input is a set of events, and any output is a set of events.

Formally,
@ Input alphabet: ¥ =28 — { &}
o where E = |J;_, E) is the set of events in all statecharts

@ Output alphabet: I' = 2F'

e with F/ = {sendj.ee U SCy |j¢{1,...,n}}

k=1

all outputs that cannot be consumed

Joost-Pieter Katoen Theoretical Foundations of the UML 26/28

From statecharts to a Mealy machine (4)

Next-state function ¢
Defines the effect of executing a step.

Formally,
o (sh,...,s,) €d((s1,...,8n), E) where
o s/ = (C}, 1", V!) is the next state after executing
T; = nextStep(C;, I;, Vi)
o and s; = (C/, I U(ENE;), V)

1) 7

Joost-Pieter Katoen Theoretical Foundations of the UML 27/28

From statecharts to a Mealy machine (5)

Output function w
Defines all events sent to some SC outside the system (SCy,...,SC,).

Formally,
@ w((s1y..-,8n),FE) =
{send jeljé{l,....,n} A3 3x clal/send e, y o nextStep(Ci,Ii,Vi)}

Joost-Pieter Katoen Theoretical Foundations of the UML 28/28

