
Theoretical Foundations of the UML
Lecture 13: Realising Local Choice MSGs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1415/uml/

14. Dezember 2014

Joost-Pieter Katoen Theoretical Foundations of the UML 1/39

Outline

1 Introduction

2 Local Choice MSGs

3 Regular Expressions over MSCs

4 A Realisation Algorithm for MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 2/39

Overview

1 Introduction

2 Local Choice MSGs

3 Regular Expressions over MSCs

4 A Realisation Algorithm for MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 3/39

Safe realisability

Definition (Realisability of MSGs)
1 MSG G is realisable whenever L(G) = L(A) for some CFM A.
2 MSG G is safely realisable whenever L(G) = L(A) for some

deadlock-free CFM A.

Joost-Pieter Katoen Theoretical Foundations of the UML 4/39

Summary of results

Results so far:
1 Conditions for (safe) realisability for finite sets of MSCs.
2 Checking these conditions is co-NP complete (in P).
3 Regular MSGs are (safely) realisable by ∀-bounded CFMs.
4 Checking regularity of MSGs is undecidable.
5 Communication-closedness implies regularity; its check is co-NP

complete.
6 Local communication-closedness implies regularity, and can be

checked in P.

Joost-Pieter Katoen Theoretical Foundations of the UML 5/39

Some remaining questions

Can results be obtained for larger classes of MSGs?

What happens if we allow synchronisation messages?
recall that weak CFMs do not involve synchronisation messages

How do we obtain a CFM realising an MSG algorithmically?
in particular, for non-local choice MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 6/39

Today’s topics

Today’s lecture
Safe realisability of (a somewhat restricted class of) MSGs. So as to
obtain deadlock-free CFMs, the input MSG is required to be local
choice. The CFM are not required to be weak. The algorithm will
exploit synchronisation messages.

Results:
1 Realisability for constrained regular expressions of local-choice

MSGs.
2 An algorithm that generates a CFM from such local-choice MSG.

Joost-Pieter Katoen Theoretical Foundations of the UML 7/39

Overview

1 Introduction

2 Local Choice MSGs

3 Regular Expressions over MSCs

4 A Realisation Algorithm for MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 8/39

Non-local choice

p q

a

p q

b

G:

v1 v2

Inconsistency if process p behaves according to vertex v1
and process q behaves according to vertex v2

=⇒ realisation by a CFM may yield a deadlock

Problem:
Subsequent behavior in G is determined by distinct processes. When several
processes independently decide to initiate behavior, they might start executing
different successor MSCs (= vertices). This is called a non-local choice.

Joost-Pieter Katoen Theoretical Foundations of the UML 9/39

A (more involved) non-local choice

p1 p2 p3

a

p1 p2 p3

b

p1 p2 p3

c

Problem:
Inconsistency if p1 decides to send a and p3 decides to send c.
Which branch to take in the initial vertex?

Joost-Pieter Katoen Theoretical Foundations of the UML 10/39

Preliminaries

Definition (Minimal event)
Let (E,�) be a poset. Event e ∈ E is a minimal event wrt. � if
¬(∃e′ �= e. e′ � e).

Intuition: there is no event that has to happen before e happens.
That is to say: the occurrence of e does not depend on any other event.

Definition (Partial order of a path)
For finite path π = v1 . . . vn in MSG G, let <M(π) be the partial order of
the MSC M(π) = λ(v1) • . . . • λ(vn).
Let min(π) be the set of minimal events wrt. <M(π) along finite path π.

Joost-Pieter Katoen Theoretical Foundations of the UML 11/39

Branching vertices

A branching vertex in MSG G either has at least two successors, or is a
final vertex with at least one successor.

Pictorially, vertex v is branching if either:

v

v1 vn

v

. . .

...

or

︸ ︷︷ ︸
n ≥ 2

 ≥ 1

Without loss of generality we assume that branching final vertices do not
occur. They can be always be removed at the expense of copying such vertices.

Joost-Pieter Katoen Theoretical Foundations of the UML 12/39

Local choice property

Definition (Local choice)
Let MSG G = (V,→, v0, F, λ). MSG G is local choice if for every
branching vertex v ∈ V it holds:

∃process p.
(∀π ∈ Paths(v). |min(π′)| = 1 ∧ min(π′) ⊆ Ep

)
where for π = vv1v2 . . . vn we have π′ = v1v2 . . . vn.

Intuition:
There is a single process that initiates behavior along every path from the
branching vertex v. This process decides how to proceed. In a realisation by a
CFM, it can inform the other processes how to proceed.

Local choice or not?
Deciding whether MSG G is local choice or not is in P. (Exercise.)

Joost-Pieter Katoen Theoretical Foundations of the UML 13/39

Local choice

p1 p2

left

a

p1 p2

right

b

G:

How to resolve a non-local choice?
Amend your MSG and add control messages (cf. above example)

Joost-Pieter Katoen Theoretical Foundations of the UML 14/39

Overview

1 Introduction

2 Local Choice MSGs

3 Regular Expressions over MSCs

4 A Realisation Algorithm for MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 15/39

Regular expressions over MSCs

Definition (Asynchronous iteration)
For M1,M2 ⊆ M sets of MSCs, let:

M1 •M2 = {M1 •M2 | M1 ∈ M1,M2 ∈ M2 }

For M ⊆ M let

Mi =

{
{Mε} if i=0, where Mε denotes the empty MSC

M•Mi−1 if i > 0

The asynchronous iteration of M is now defined by:

M∗ =
⋃
i�0

Mi.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/39

Regular expressions over MSCs

Definition (Regular expressions over MSCs)
The set REXM of regular expressions over M is given by the grammar:

α ::= ∅ | M | α1 · α2 | α1 + α2 | α∗

where MSC M ∈ M.

Definition (Semantics of regular expressions, L(.) : REXM → 2M)
L(∅) = ∅

L(M) = {M }
L(α1 · α2) = L(α1) • L(α2)

L(α1 + α2) = L(α1) ∪ L(α2)

L(α∗) = L(α)∗

Joost-Pieter Katoen Theoretical Foundations of the UML 17/39

Locally accepting CFMs

Definition (Locally accepting CFM)
CFM A = (((Sp,∆p))p∈P ,D, sinit , F) is locally accepting (la, for short) if

F =
∏
p∈P

Fp where Fp ⊆ Sp.

Joost-Pieter Katoen Theoretical Foundations of the UML 18/39

Regular expressions for MSCs

Let P = {1, 2, 3, 4} and C = {req, ack}.
Example

1 2
req

A

1 2
ack

B

3 4
req

C

Consider the following regular expressions over M:
α1 = (A · B)∗ det. ∀1-bounded deadlock-free weak la CFM
α2 = (A+B)∗ det. ∃1-bounded la CFM
α3 = (A · C)∗ not realisable
α4 = A · (A+B)∗ ∃1-bounded deadlock-free la CFM

How about realisability of L(αi)?

Joost-Pieter Katoen Theoretical Foundations of the UML 19/39

Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

1 2

req

1 2

ack

Joost-Pieter Katoen Theoretical Foundations of the UML 20/39

Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 :
2 → 1 :

Joost-Pieter Katoen Theoretical Foundations of the UML 21/39

Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 : (req,L)
2 → 1 :

1 2

(req,L)

Joost-Pieter Katoen Theoretical Foundations of the UML 22/39

Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 : (req,L) (req,L)
2 → 1 :

1 2

(req,L)
(req,L)

Joost-Pieter Katoen Theoretical Foundations of the UML 23/39

Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 : (req,L) (req,L) (req,R)
2 → 1 :

1 2

(req,L)
(req,L)
(req,R)

Joost-Pieter Katoen Theoretical Foundations of the UML 24/39

Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 : (req,L) (req,R)
2 → 1 :

1 2

req

(req,L)
(req,R)

Joost-Pieter Katoen Theoretical Foundations of the UML 25/39

Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 : (req,R)
2 → 1 :

1 2

req
req

(req,R)

Joost-Pieter Katoen Theoretical Foundations of the UML 26/39

Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 :
2 → 1 :

1 2

req
req
req

Joost-Pieter Katoen Theoretical Foundations of the UML 27/39

Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 :
2 → 1 : (ack,L)

1 2

req
req
req

(ack,L)

Joost-Pieter Katoen Theoretical Foundations of the UML 28/39

Realising local-choice expressions by deadlock-free CFMs

A · (A+B)∗
1 2

req

1 2

req

1 2

ack

!(1, 2, req,L)

!(1, 2, req,R)

?(2, 1, req,L)

?(2, 1, req,R)

!(1, 2, req,L)

?(2, 1, req,L)

!(1, 2, req,R)

?(2, 1, req,R)

?(1, 2, ack,L)

!(2, 1, ack,L)

?(1, 2, ack,R)

!(2, 1, ack,R)

1 → 2 :
2 → 1 :

1 2

req
req
req
ack

Joost-Pieter Katoen Theoretical Foundations of the UML 29/39

Star-connected regular expressions

Definition (Connected MSC)
An MSC M = (P, E, C, l,m,<) ∈ M is connected if:

∀e, e′ ∈ E. (e, e′) ∈ (< ∪ <−1)∗

Definition (Star-connected)
Regular expression α ∈ REXM is star-connected if, for any
subexpression β∗ of α, L(β) is a set of connected MSCs.

Examples on the black board.

Joost-Pieter Katoen Theoretical Foundations of the UML 30/39

Regular expressions vs. CFMs

Definition (Finitely generated)
Set of MSCs M ⊆ M is finitely generated if there is a finite set of MSCs
M̂ ⊆ M such that M ⊆ M̂∗.

Theorem [Morin 2002]

Let M be finitely generated. Then:

M is realisable

iff

there exists a star-connected regular expression α with L(α) = M.

Joost-Pieter Katoen Theoretical Foundations of the UML 31/39

Overview

1 Introduction

2 Local Choice MSGs

3 Regular Expressions over MSCs

4 A Realisation Algorithm for MSGs

Joost-Pieter Katoen Theoretical Foundations of the UML 32/39

Local choice MSGs

An example local-choice MSG on black board.

Joost-Pieter Katoen Theoretical Foundations of the UML 33/39

Realising local choice (C)MSGs

Theorem [Genest et al., 2005]

Any local-choice MSG G is safely realisable by a CFM with additional
synchronisation data (which is of size linear in G).

Proof
As MSG G is local choice, at every branch v of G there is a unique
process, p(v), say, such that on every path from v the unique minimal
event occur at p(v). Then:

1 Process p(v) determines the successor vertex of v.
2 Process p(v) informs all other processes about its decision by

adding synchronisation data to the exchanged messages.
3 Synchronisation data is the path (in G) from v to the next

branching vertex along the direction chosen by p(v).

Joost-Pieter Katoen Theoretical Foundations of the UML 34/39

Maximal non-branching paths

Definition (Maximal non-branching paths)
For MSG G = (V,→, v0, F, λ), let nbp : V → V ∗ be defined by:

nbp(v) =

{
v if v ∈ F or v is a branching vertex

v1 . . . vn otherwise

where v1 . . . vn ∈ V ∗ is a maximal path (i.e., a path that cannot be
prolonged) satisfying:

1 vi = v for some i, 0 < i � n, and
2 vn ∈ F or is a branching vertex, and
3 v1 = v0 or is a direct successor of a branching vertex, and
4 v2, . . . , vn−1 �∈ F and are all non-branching vertices

Intuition
nbp(v) is the maximal non-branching path to which v belongs.

Joost-Pieter Katoen Theoretical Foundations of the UML 35/39

Structure of the CFM of local choice MSG G

Let MSG G = (V,→, v0, F , λ) be local choice.

Define the CFM AG = (((Sp,∆p))p∈P ,D, sinit , F ′) with:
1 Local automaton Ap = (Sp,∆p) as defined on next slides

2 D = {npb(v) | v ∈ V }
synchronisation data = maximal non-branching paths in G

3 sinit = { (v0,∅) }n where n = |P|
each local automaton Ap starts in initial state (v0,∅), i.e.,
in initial vertex v0 while no events of p have been performed

4 s ∈ F ′ iff for all p ∈ P, local state s[p] = (v,E) with E ⊆ Ep and:
1 v ∈ F and E contains a maximal event wrt. <p in MSC λ(v), or
2 v �∈ F and π = v . . . w is a path in G with w ∈ F and E contains a

maximal event wrt. <p in MSC λ(π).

Joost-Pieter Katoen Theoretical Foundations of the UML 36/39

State space of local automaton Ap

Sp = V × Ep such that for any s = (v,E) ∈ Sp:

∀e, e′ ∈ λ(v).
(
e <p e

′ and e′ ∈ E implies e ∈ E
)

that is, E is downward-closed with respect to <p in MSC λ(v)

Intuition: a state (v,E) means that process p is currently in vertex
v of G and has already performed the events E of λ(v)

Initial state of Ap is sinit [p] = (v0,∅)

Joost-Pieter Katoen Theoretical Foundations of the UML 37/39

Transition relation of local automaton Ap

Executing events within a vertex of the MSG G:

e ∈ Ep ∩ λ(v) and e �∈ E

(v,E)
l(e),nbp(v)−−−−−−−−→p (v,E ∪ { e })

Note: since E ∪ {e} is downward-closed wrt. <p, e is enabled
Taking an edge (possibly a self-loop) of the MSG G:

E = Ep ∩ λ(v) and e ∈ Ep ∩ λ(w) and
vu0 . . . unw ∈ V ∗ with p not active in u0 . . . un

(v,E)
l(e),nbp(w)−−−−−−−−→p (w, {e})

Note: vertex w is the first successor vertex of v on which p is active

Joost-Pieter Katoen Theoretical Foundations of the UML 38/39

Examples

A couple of examples on the black board.

Joost-Pieter Katoen Theoretical Foundations of the UML 39/39

