Theoretical Foundations of the UML
 Lecture 6: Compositional Message Sequence Graphs

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group
http://moves.rwth-aachen.de/teaching/ws-1415/uml/
11. November 2014

Outline

(1) A non-decomposable MSC
(2) Compositional Message Sequence Charts
(3) Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs
(5) Existence of Safe Paths
(6) Universality of Safe Paths

Overview

(1) A non-decomposable MSC
(2) Compositional Message Sequence Charts
(3) Compositional Message Sequence Graphs

4 Safe Compositional Message Sequence Graphs
(5) Existence of Safe Paths
(6) Universality of Safe Paths

An MSC that cannot be decomposed

This MSC cannot be decomposed as

$$
M_{1} \bullet M_{2} \bullet \ldots \bullet M_{n} \quad \text { for } n>1
$$

This can be seen as follows:

- e_{1} and $e_{2}=m\left(e_{1}\right)$ must both belong to M_{1}
- $e_{3} \preceq e_{2}$ and $e_{1} \preceq e_{4}$ thus $e_{3}, e_{4} \notin M_{j}$, for $j<1$ and $j>1$
$\Longrightarrow e_{3}, e_{4}$ must belong to M_{1}
- by similar reasoning: $e_{5}, e_{6} \in M_{1}$ etc.

Problem:

Compulsory matching between send and receive events in the same MSG vertex (i.e., send e and receive $m(e)$ must belong to the same MSC).

Overview

(1) A non-decomposable MSC

(2) Compositional Message Sequence Charts
(3) Compositional Message Sequence Graphs
(4) Safe Compositional Message Sequence Graphs
(5) Existence of Safe Paths
(6) Universality of Safe Paths

Compositional MSCs

Solution: drop restriction that e and $m(e)$ belong to the same MSC ($=$ allow for incomplete message transfer)

Definition (Compositional MSC)

$M=(\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$ is a compositional MSC (CMSC, for short) where $\mathcal{P}, E, \mathcal{C}$ and l are defined as before, and

- $m: E_{!} \rightarrow E_{\text {? }}$ is a partial, injective function such that (as before):

$$
m(e)=e^{\prime} \wedge l(e)=!(p, q, a) \quad \text { implies } \quad l\left(e^{\prime}\right)=?(q, p, a)
$$

- $\preceq=(\bigcup_{p \in \mathcal{P}}<_{p} \quad \cup \quad\{(e, m(e)) \mid e \in \underbrace{\operatorname{dom}(m)}\})^{*}$
domain of m
" $m(e)$ is defined"

Note:

An MSC is a CMSC where m is total and bijective.

CMSC example

Concatenation of CMSCs (1)

Let $M_{i}=\left(\mathcal{P}_{i}, E_{i}, \mathcal{C}_{i}, l_{i}, m_{i}, \preceq_{i}\right) \in \mathbb{C M} \quad i \in\{1,2\}$
be CMSCs with $E_{1} \cap E_{2}=\varnothing$
The concatenation of CMSCs M_{1} and M_{2} is the CMSC $M_{1} \bullet M_{2}=\left(\mathcal{P}_{1} \cup \mathcal{P}_{2}, E, \mathcal{C}_{1} \cup \mathcal{C}_{2}, l, m, \preceq\right)$ with:

- $E=E_{1} \cup E_{2}$
- $l(e)=l_{1}(e)$ if $e \in E_{1}, l_{2}(e)$ otherwise
- $m(e)=E_{!} \rightarrow E_{\text {? }}$ satisfies:
(1) m extends m_{1} and m_{2}, i.e., $e \in \operatorname{dom}\left(m_{i}\right)$ implies $m(e)=m_{i}(e)$
(2) m matches unmatched send events in M_{1} with unmatched receive events in M_{2} according to order on process (matching from top to bottom)
the k-th unmatched send in M_{1} is matched with the k-th unmatched receive in M_{2} (of the same "type")
(3) $M_{1} \bullet M_{2}$ is FIFO (when restricted to matched events)

Concatenation of CMSCs (2)

Let $M_{i}=\left(\mathcal{P}_{i}, E_{i}, \mathcal{C}_{i}, l_{i}, m_{i}, \preceq_{i}\right) \in \mathbb{C M} \quad i \in\{1,2\}$ be CMSCs with $E_{1} \cap E_{2}=\varnothing$

The concatenation of CMSCs M_{1} and M_{2} is the CMSC $M_{1} \bullet M_{2}=\left(\mathcal{P}_{1} \cup \mathcal{P}_{2}, E_{1} \cup E_{2}, \mathcal{C}_{1} \cup \mathcal{C}_{2}, l, m, \preceq\right)$ with:

- l and m are defined as on the previous slide
- \preceq is the reflexive and transitive closure of:

$$
\begin{array}{rll}
\left(\bigcup_{p \in \mathcal{P}}<_{p, 1} \cup<_{p, 2}\right) & \cup & \left\{\left(e, e^{\prime}\right) \mid e \in E_{1} \cap E_{p}, e^{\prime} \in E_{2} \cap E_{p}\right\} \\
\cup & \{(e, m(e) \mid e \in \operatorname{dom}(m)\}
\end{array}
$$

Examples

RWTHAACHEN

Associativity

$(M \bullet M) \bullet M^{\prime}:$

$M \bullet\left(M \bullet M^{\prime}\right):$

this is non-FIFO
(and thus undefined)

Note:

Concatenation of CMSCs is not associative.

Overview

(1) A non-decomposable MSC
(2) Compositional Message Sequence Charts
(3) Compositional Message Sequence Graphs
(4) Safe Compositional Message Sequence Graphs
(5) Existence of Safe Paths
(0) Universality of Safe Paths

Compositional MSG

Let $\mathbb{C M}$ be the set of all CMSCs.

Definition (Compositional MSG)

A compositional MSG (CMSG) $G=\left(V, \rightarrow, v_{0}, F, \lambda\right)$ with $\lambda: V \rightarrow \mathbb{C M}$, where V, \rightarrow, v_{0}, and F as for MSGs.

The difference with an MSG is that the vertices in a CMSG are labeled with compositional MSCs (rather than "real" MSCs).

Paths

Let $G=\left(V, \rightarrow, v_{0}, F, \lambda\right)$ be a CMSG.

Definition (Path in a CMSG)

A path π of G is a finite sequence $\pi=u_{0} u_{1} \ldots u_{n}$ with $u_{i} \in V(0 \leq i \leq n)$ and $u_{i} \rightarrow u_{i+1} \quad(0 \leq i<n)$

Definition (Accepting path of a CMSG)

Path $\pi=u_{0} \ldots u_{n}$ is accepting if: $u_{0}=v_{0}$ and $u_{n} \in F$.

Definition (CMSC of a path)

The CMSC of a path $\pi=u_{0} \ldots u_{n}$ is:

$$
M(\pi)=\left(\ldots\left(\lambda\left(u_{0}\right) \bullet \lambda\left(u_{1}\right)\right) \bullet \lambda\left(u_{2}\right) \ldots\right) \bullet \lambda\left(u_{n}\right)
$$

where CMSC concatenation is left associative.

The MSC language of a CMSG

Definition (Language of a CMSG)

The (MSC) language of CMSG G is defined by:

$$
L(G)=\{\underbrace{M(\pi) \in \mathbb{M}}_{\text {only "real" MSCs }} \mid \pi \text { is an accepting path of } G\} .
$$

Accepting paths that give rise to an CMSC (which is not an MSC) are not taken into account in $L(G)$.

Yannakakis' example as compositional MSG

This MSC cannot be modeled for $n>1$ by:

$$
M=M_{1} \bullet M_{2} \bullet \ldots \bullet M_{n} \quad \text { with } \quad M_{i} \in \mathbb{M}
$$

But it can be modeled as the compositional MSG:

RWIHAACHEN
UNVERSTY

Overview

(1) A non-decomposable MSC
(Compositional Message Sequence Charts
(3) Compositional Message Sequence Graphs
(4) Safe Compositional Message Sequence Graphs
(5) Existence of Safe Paths
(6) Universality of Safe Paths

Safe paths and CMSGs

Definition (Safe path)

Path π of CMSG G is safe whenever $M(\pi) \in \mathbb{M}$.

Definition (Safe CMSG)

CMSG G is safe if for every accepting path π of $G, M(\pi)$ is an MSC.

So:

CMSG G is safe if on any of its accepting paths there are no unmatched sends and receipts, i.e., if any of its accepting paths is indeed an MSC.

Overview

(1) A non-decomposable MSC
(Compositional Message Sequence Charts
(3) Compositional Message Sequence Graphs

Ca Safe Compositional Message Sequence Graphs
(5) Existence of Safe Paths
(6) Universality of Safe Paths

Existence of a safe accepting path

Theorem: undecidability of existence of a safe path

The decision problem "does CMSG G have at least one safe, accepting path?" is undecidable.

Proof.

By a reduction from Post's Correspondence Problem (PCP).
... black board ...

The complement decision problem "does CMSG G have no safe, accepting path?" is undecidable too.

Overview

(1) A non-decomposable MSC
(1) Compositional Message Sequence Charts
(3) Compositional Message Sequence Graphs
C) Safe Compositional Message Sequence Graphs
(5) Existence of Safe Paths
(6) Universality of Safe Paths

Universality of safe accepting paths

Theorem: undecidability of existence of a safe path

The decision problem "does CMSG G have at least one safe, accepting path?" is undecidable.

Theorem: decidability of universality of safe paths

The decision problem "are all accepting paths of CMSG G safe?" is decidable in PTIME.

Proof.

Polynomial reduction to reachability problem in (non-deterministic) pushdown automata.
... see details on the next slides ...

Pushdown automata

Definition (Pushdown automaton)

A pushdown automaton (PDA, for short) $K=\left(Q, q_{0}, \Gamma, \Sigma, \Delta\right)$ with

- Q, a finite set of control states
- $q_{0} \in Q$, the initial state
- Γ, a finite stack alphabet
- Σ, a finite input alphabet
- $\Delta \subseteq Q \times \Sigma \times \Gamma \times Q \times \Gamma^{*}$, the transition relation.

Transition relation

$\left(q, a, \gamma, q^{\prime}\right.$, pop $) \in \Delta$ means: in state q, on reading input symbol a and top of stack is symbol γ, change to q^{\prime} and pop γ from the stack.

Reachability in pushdown automata

Definition

A configuration c is a triple (state q, stack content Z, rest input w).

Definition

Given a transition in Δ, a (direct) successor configuration c^{\prime} of c is obtained: $c \vdash c^{\prime}$.

Reachability problem

For configuration c, and initial configuration $c_{0}: c_{0} \vdash^{*} c$?

Theorem:

[Esparza et al. 2000]
The reachability problem for PDA is decidable in PTIME.

Checking whether a CMSG is safe is decidable

- Consider any ordered pair $\left(p_{i}, p_{j}\right)$ of processes in CMSG G
- Proof idea: construct a PDA $K_{i, j}=\left(Q, q_{0}, \Gamma, \Sigma, \Delta\right)$ such that

CMSG G is not safe wrt. $\left(p_{i}, p_{j}\right)$ iff PDA $K_{i, j}$ accepts

- For accepting path $u_{0} \ldots u_{k}$ in G, feed $K_{i, j}$ with the word

$$
\rho_{0} \ldots \rho_{k} \text { where } \rho_{i} \in \operatorname{Lin}\left(\lambda\left(u_{i}\right)\right)
$$

such that unmatched sends (of some type) precede all unmatched receipts (of the same type)

- Possible violations that $K_{i, j}$ may encounter:
(1) nr. of unmatched ! $\left(p_{i}, p_{j}, \cdot\right)>\mathrm{nr}$. of unmatched ? $\left(p_{j}, p_{i}, \cdot\right)$
(2) type of k-th unmatched send \neq type of k-th unmatched receive
(3) non-FIFO communication

The nondeterministic PDA $K_{i, j}$

Let $\left\{a_{1}, \ldots, a_{k}\right\}$ be the message contents in CMSG G for $\left(p_{i}, p_{j}\right)$.
Nondeterministic PDA $K_{i, j}=\left(Q, q_{0}, \Gamma, \Sigma, \Delta\right)$ where:

- Control states $Q=\left\{q_{0}, q_{a_{1}}, \ldots, q_{a_{k}}, q_{e r r}, q_{F}\right\}$
- Stack alphabet $\Gamma=\{1, \#\}$

1 counts nr. of unmatched ! $\left(p_{i}, p_{j}, a_{m}\right)$, and \# is bottom of stack

- Input alphabet $\Sigma=\left\{\begin{array}{l}\text { unmatched action }!\left(p_{i}, p_{j}, a_{m}\right) \\ \text { unmatched action } ?\left(p_{j}, p_{i}, a_{m}\right) \\ \text { matched actions !? }\left(p_{i}, p_{j}, a_{m}\right), ?!\left(p_{j}, p_{i}, a_{m}\right)\end{array}\right.$
- Transition function Δ is described on next slide

Safeness of CMSGs (2)

- Initial configuration is $\left(q_{0}, \#, w\right)$
- w is linearization of actions at p_{i} and p_{j} on an accepting path of G
- On reading ! $\left(p_{i}, p_{j}, a_{m}\right)$ in q_{0}, push 1 on stack
- nondeterministically move to state $q_{a_{m}}$ or stay in q_{0}
- On reading ? $\left(p_{j}, p_{i}, a_{m}\right)$ in q_{0}, proceed as follows:
- if 1 is on stack, pop it
- otherwise, i.e., if stack is empty, accept (i.e., move to q_{F})
- On reading matched send !? $\left(p_{i}, p_{j}, a_{k}\right)$ in q_{0}
- stack empty (i.e., equal to \#)? ignore input; otherwise, accept
- Ignore the following inputs in state q_{0} :
- matched send events !? $\left(p_{j}, p_{i}, a_{k}\right)$, and
- unmatched sends or receipts not related to p_{i} and p_{j}
- Remaining input w empty? Accept, if stack non-empty; else reject

Safeness of CMSGs (3)

The behaviour in state $q_{a_{m}}$ for $0<m \leqslant k$:

- Ignore all actions except ? $\left(p_{j}, p_{i}, a_{\ell}\right)$ for all $0<\ell \leqslant k$
- On reading ? $\left(p_{j}, p_{i}, a_{\ell}\right)$ (for some $\left.0<\ell \leqslant k\right)$ in state $q_{a_{m}}$ do:
- if 1 is on top of stack, pop it
- If stack is empty:
- if last receive differs from a_{m}, accept
- otherwise reject, while ignoring the rest (if any) of the input

Safeness of CMSGs (4)

It follows: PDA $K_{i, j}$ accepts iff CMSG G is not safe wrt. $\left(p_{i}, p_{j}\right)$
\Longrightarrow CMSG G is not safe wrt. $\left(p_{i}, p_{j}\right)$ iff configuration $\left(q_{F}, \cdot, \cdot\right)$ is reachable.
\Longrightarrow reachability of a configuration in a PDA is in PTIME, hence checking safeness wrt. $\left(p_{i}, p_{j}\right)$ is in PTIME.

Time complexity

The worst-case time complexity of checking whether CMSG G is safe is in $\mathcal{O}\left(k^{2} \cdot N^{2} \cdot L \cdot|E|^{2}\right)$ where $k=|\mathcal{P}|, N=|V|$, and $L=|\mathcal{C}|$.

Proof.

Checking reachability in PDA $K_{i, j}$ is in $\mathcal{O}\left(L \cdot|E|^{2}\right)$. The number of PDAs is k^{2}, as we consider ordered pairs in \mathcal{P}. The number of paths in the CMSG G for each pair that need to be checked is in $\mathcal{O}\left(N^{2}\right)$, as a single traversal for each loop in G suffices.

