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Organisation

• Schedule:
– lecture 9:00-10:30, 11:00-12:30 (Mon-Thu)

� 10:00-11:30, 11:45-13:15?
– exercises 14:00-14:45, 15:15-16:00 (Mon-Thu)

� 14:00-15:30?
• Technical Writing exam on Tuesday morning

– Tuesday afternoon session?
• Bridging Course exam on Friday, 20 March 2015, 13:00-16:00, b-it Rheinsaal

– Friday morning session?

• Please ask questions!
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Overview of Week 4

1. Regular Languages
2. Context-Free Languages
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Literature

• J.E. Hopcroft, R. Motwani, J.D. Ullmann: Introduction to Automata Theory, Languages, and
Computation, 2nd ed., Addison-Wesley, 2001
• A. Asteroth, C. Baier: Theoretische Informatik , Pearson Studium, 2002 [in German]
• http://www.jflap.org/

(software for experimenting with formal languages and automata)
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Formal Languages

Outline of Part A

Formal Languages

Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook
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Formal Languages

Words and Languages

• Computer systems transform data
• Data encoded as (binary) words

=⇒ Data sets = sets of words = formal languages,
data transformations = functions on words

Example A.1

Java = {all valid Java programs},
Compiler : Java→ Bytecode
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Formal Languages

Alphabets

The atomic elements of words are called symbols (or letters).

Definition A.2

An alphabet is a finite, non-empty set of symbols (“letters”).

Σ, Γ, . . . denote alphabets
a, b, . . . denote letters

Example A.3

1. Boolean alphabet B := {0, 1}
2. Latin alphabet Σlatin := {a, b, c, . . . , z}
3. Keyboard alphabet Σkey

4. Morse alphabet Σmorse := {·,−,  }
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Formal Languages

Words

Definition A.4

• A word is a finite sequence of letters from a given alphabet Σ.
• Σ∗ is the set of all words over Σ.

• |w | denotes the length of a word w ∈ Σ∗, i.e., |a1 . . . an| := n.
• The empty word is denoted by ε, i.e., |ε| = 0.
• The concatenation of two words v = a1 . . . am (m ∈ N) and w = b1 . . . bn (n ∈ N) is the

word
v · w := a1 . . . amb1 . . . bn

(often written as vw).
• Thus: w · ε = ε · w = w .
• A prefix/suffix v of a word w is an initial/trailing part of w , i.e., w = vv ′/w = v ′v for some

v ′ ∈ Σ∗.
• If w = a1 . . . an, then wR := an . . . a1.
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Formal Languages

Formal Languages I

Definition A.5

A set of words L ⊆ Σ∗ is called a (formal) language over Σ.

Example A.6

1. over B = {0, 1}: set of all bit strings containing 1101
2. over Σ = {I,V,X, L,C,D,M}: set of all valid roman numbers
3. over Σkey: set of all valid Java programs

9 of 67 Foundations of Informatics/Formal Languages and Semantics, Part A
Thomas Noll
b-it Bonn, 16-20 March 2015



Formal Languages

Formal Languages I

Definition A.5

A set of words L ⊆ Σ∗ is called a (formal) language over Σ.

Example A.6

1. over B = {0, 1}: set of all bit strings containing 1101

2. over Σ = {I,V,X, L,C,D,M}: set of all valid roman numbers
3. over Σkey: set of all valid Java programs

9 of 67 Foundations of Informatics/Formal Languages and Semantics, Part A
Thomas Noll
b-it Bonn, 16-20 March 2015



Formal Languages

Formal Languages I

Definition A.5

A set of words L ⊆ Σ∗ is called a (formal) language over Σ.

Example A.6

1. over B = {0, 1}: set of all bit strings containing 1101
2. over Σ = {I,V,X, L,C,D,M}: set of all valid roman numbers

3. over Σkey: set of all valid Java programs

9 of 67 Foundations of Informatics/Formal Languages and Semantics, Part A
Thomas Noll
b-it Bonn, 16-20 March 2015



Formal Languages

Formal Languages I

Definition A.5

A set of words L ⊆ Σ∗ is called a (formal) language over Σ.

Example A.6

1. over B = {0, 1}: set of all bit strings containing 1101
2. over Σ = {I,V,X, L,C,D,M}: set of all valid roman numbers
3. over Σkey: set of all valid Java programs

9 of 67 Foundations of Informatics/Formal Languages and Semantics, Part A
Thomas Noll
b-it Bonn, 16-20 March 2015



Formal Languages

Formal Languages II

Seen:
• Basic notions: alphabets, words
• Formal languages as sets of words

Open:
• Description of computations on words?
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Finite Automata

Outline of Part A

Formal Languages

Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook
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Finite Automata

Example: Pattern Matching

Example A.7 (Pattern 1101)

1. Read Boolean string bit-by-bit
2. Test whether it contains 1101
3. Idea: remember which (initial) part of 1101 has been recognised
4. Five prefixes: ε, 1, 11, 110, 1101
5. Diagram: on the board

What we used:
• finitely many (storage) states
• an initial state
• for every current state and every input symbol: a new state
• a successful state
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Finite Automata

Deterministic Finite Automata I

Definition A.8

A deterministic finite automaton (DFA) is of the form

A = 〈Q,Σ, δ, q0, F〉
where
• Q is a finite set of states
• Σ denotes the input alphabet
• δ : Q × Σ→ Q is the transition function
• q0 ∈ Q is the initial state
• F ⊆ Q is the set of final (or: accepting) states
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Finite Automata

Deterministic Finite Automata II

Example A.9

Pattern matching (Example A.7):
• Q = {q0, . . . , q4}
• Σ = B = {0, 1}
• δ : Q × Σ→ Q on the board
• F = {q4}

Graphical Representation of DFA:
• states =⇒ nodes
• δ(q, a) = q′ =⇒ q a−→ q′

• initial state: incoming edge without source state
• final state(s): double circle
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Finite Automata

Acceptance by DFA I

Definition A.10

Let 〈Q,Σ, δ, q0, F〉 be a DFA. The extension of δ : Q × Σ→ Q,
δ∗ : Q × Σ∗ → Q,

is defined by
δ∗(q,w) := state after reading w starting from q.

Formally:

δ∗(q,w) :=

{
q if w = ε
δ∗(δ(q, a), v) if w = av

Thus: if w = a1 . . . an and q
a1−→ q1

a2−→ . . .
an−→ qn, then δ∗(q,w) = qn

Example A.11

Pattern matching (Example A.9): on the board
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Finite Automata

Acceptance by DFA II

Definition A.12

• A accepts w ∈ Σ∗ if δ∗(q0,w) ∈ F .
• The language recognised (or: accepted) by A is

L(A) := {w ∈ Σ∗ | δ∗(q0,w) ∈ F}.

• A language L ⊆ Σ∗ is called DFA-recognisable if there exists some DFA A such that
L(A) = L.
• Two DFA A1,A2 are called equivalent if

L(A1) = L(A2).
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Finite Automata

Acceptance by DFA III

Example A.13

1. The set of all bit strings containing 1101 is recognised by the automaton from Example A.9.

2. Two (equivalent) automata recognising the language

{w ∈ B∗ | w contains 1} :

on the board
3. An automaton which recognises

{w ∈ {0, . . . , 9}∗ | value of w divisible by 3}

Idea: test whether sum of digits is divisible by 3 – one state for each residue class (on the
board)
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Finite Automata

Deterministic Finite Automata

Seen:
• Deterministic finite automata as a model of simple sequential computations
• Recognisability of formal languages by automata

Open:
• Composition and transformation of automata?
• Which languages are recognisable, which are not (alternative characterisation)?
• Language definition 7→ automaton and vice versa?
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Finite Automata

Operations on Languages

Simplest case: Boolean operations (complement, intersection, union)

Question

Let A1, A2 be two DFA with L(A1) = L1 and L(A2) = L2.
Can we construct automata which recognise
• L1 (:= Σ∗ \ L1),
• L1 ∩ L2, and
• L1 ∪ L2?
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Finite Automata

Language Complement

Theorem A.14

If L ⊆ Σ∗ is DFA-recognisable, then so is L.

Proof.

Let A = 〈Q,Σ, δ, q0, F〉 be a DFA such that L(A) = L. Then:

w ∈ L ⇐⇒ w /∈ L ⇐⇒ δ∗(q0,w) /∈ F ⇐⇒ δ∗(q0,w) ∈ Q \ F .

Thus, L is recognised by the DFA 〈Q,Σ, δ, q0,Q \ F〉.

Example A.15

on the board
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Finite Automata

Language Intersection I

Theorem A.16

If L1, L2 ⊆ Σ∗ are DFA-recognisable, then so is L1 ∩ L2.

Proof.

Let Ai = 〈Qi,Σ, δi, q i
0, Fi〉 be DFA such that L(Ai) = Li (i = 1, 2). The new

automaton A has to accept w iff A1 and A2 accept w

Idea: let A1 and A2 run in parallel
• use pairs of states (q1, q2) ∈ Q1 × Q2

• start with both components in initial state
• a transition updates both components independently
• for acceptance both components need to be in a final state
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Finite Automata

Language Intersection II

Proof (continued).

Formally: let the product automaton
A := 〈Q1 × Q2,Σ, δ, (q1

0, q
2
0), F1 × F2〉

be defined by
δ((q1, q2), a) := (δ1(q1, a), δ2(q2, a)) for every a ∈ Σ.

This definition yields (for every w ∈ Σ∗):
δ∗((q1, q2),w) = (δ∗1(q1,w), δ∗2(q2,w)) (∗)

Thus we have: A accepts w
⇐⇒ δ∗((q1

0, q
2
0),w) ∈ F1 × F2

(∗)⇐⇒ (δ∗1(q1
0,w), δ∗2(q2

0,w)) ∈ F1 × F2

⇐⇒ δ∗1(q1
0,w) ∈ F1 and δ∗2(q2

0,w) ∈ F2

⇐⇒ A1 accepts w and A2 accepts w

Example A.17

on the board
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Finite Automata

Language Intersection II

Proof (continued).
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Finite Automata

Language Union

Theorem A.18

If L1, L2 ⊆ Σ∗ are DFA-recognisable, then so is L1 ∪ L2.

Proof.

Let Ai = 〈Qi,Σ, δi, q i
0, Fi〉 be DFA such that L(Ai) = Li (i = 1, 2). The new

automaton A has to accept w iff A1 or A2 accepts w .

Idea: reuse product construction
Construct A as before but choose as final states those pairs (q1, q2) ∈ Q1 × Q2 with
q1 ∈ F1 or q2 ∈ F2. Thus the set of final states is given by

F := (F1 × Q2) ∪ (Q1 × F2).
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Finite Automata

Language Concatenation

Definition A.19

The concatenation of two languages L1, L2 ⊆ Σ∗ is given by

L1 · L2 := {v · w ∈ Σ∗ | v ∈ L1,w ∈ L2}.

Abbreviations: w · L := {w} · L, L · w := L · {w}

Example A.20

1. If L1 = {101, 1} and L2 = {011, 1}, then
L1 · L2 = {101011, 1011, 11}.

2. If L1 = 00 · B∗ and L2 = 11 · B∗, then
L1 · L2 = {w ∈ B∗ | w has prefix 00 and contains 11}.
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Finite Automata

DFA-Recognisability of Concatenation

Conjecture

If L1, L2 ⊆ Σ∗ are DFA-recognisable, then so is L1 · L2.

Proof (attempt).

Let Ai = 〈Qi,Σ, δi, q i
0, Fi〉 be DFA such that L(Ai) = Li (i = 1, 2). The new

automaton A has to accept w iff a prefix of w is recognised by A1, and if A2 accepts
the remaining suffix.
Idea: choose Q := Q1 ∪ Q2 where each q ∈ F1 is identified with q2

0
But: on the board

Conclusion

Required: automata model where the successor state (for a given state and input
symbol) is not unique
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Finite Automata

Language Iteration

Definition A.21

• The nth power of a language L ⊆ Σ∗ is the n-fold concatenation of L with itself (n ∈ N):
Ln := L · . . . · L︸ ︷︷ ︸

n times

= {w1 . . .wn | ∀i ∈ {1, . . . , n} : wi ∈ L}.

Inductively: L0 := {ε}, Ln+1 := Ln · L
• The iteration (or: Kleene star) of L is

L∗ :=
⋃

n∈N Ln = {w1 . . .wn | n ∈ N,∀i ∈ {1, . . . , n} : wi ∈ L}.

Remarks:
• we always have ε ∈ L∗ (since L0 ⊆ L∗ and L0 = {ε})
• w ∈ L∗ iff w = ε or if w can be decomposed into n ≥ 1 subwords v1, . . . , vn (i.e.,

w = v1 · . . . · vn) such that vi ∈ L for every 1 ≤ i ≤ n
• again we would suspect that the iteration of a DFA-recognisable language is

DFA-recognisable, but there is no simple (deterministic) construction
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Finite Automata

Operations on Languages and Automata

Seen:
• Operations on languages:

– complement
– intersection
– union
– concatenation
– iteration

• DFA constructions for:
– complement
– intersection
– union

Open:
• Automata model for (direct implementation of) concatenation and iteration?
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Finite Automata

Outline of Part A

Formal Languages

Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook
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Finite Automata

Nondeterministic Finite Automata I

Idea:
• for a given state and a given input symbol, several transitions (or none at all) are possible
• an input word generally induces several state sequences (“runs”)
• the word is accepted if at least one accepting run exists

Advantages:
• simplifies representation of languages

(example: B∗ · 1101 · B∗; on the board)
• yields direct constructions for concatenation and iteration of languages
• more adequate modeling of systems with nondeterministic behaviour (communication

protocols, multi-agent systems, ...)
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Finite Automata

Nondeterministic Finite Automata II

Definition A.22

A nondeterministic finite automaton (NFA) is of the form

A = 〈Q,Σ,∆, q0, F〉
where
• Q is a finite set of states
• Σ denotes the input alphabet
• ∆ ⊆ Q × Σ× Q is the transition relation
• q0 ∈ Q is the initial state
• F ⊆ Q is the set of final states

Remarks:
• (q, a, q′) ∈ ∆ usually written as q a−→ q′

• every DFA can be considered as an NFA ((q, a, q′) ∈ ∆ ⇐⇒ δ(q, a) = q′)
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Finite Automata

Acceptance by NFA

Definition A.23

• Let w = a1 . . . an ∈ Σ∗.
• A w-labelled A-run from q1 to q2 is a sequence

p0
a1−→ p1

a2−→ . . . pn−1
an−→ pn

such that p0 = q1, pn = q2, and (pi−1, ai , pi) ∈ ∆ for every 1 ≤ i ≤ n (we also write:
q1

w−→ q2).
• A accepts w if there is a w-labelled A-run from q0 to some q ∈ F
• The language recognised by A is

L(A) := {w ∈ Σ∗ | A accepts w}.
• A language L ⊆ Σ∗ is called NFA-recognisable if there exists a NFA A such that L(A) = L.
• Two NFA A1,A2 are called equivalent if L(A1) = L(A2).
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Finite Automata

Acceptance Test for NFA

Algorithm A.24 (Acceptance Test for NFA)

Input: NFA A = 〈Q,Σ,∆, q0, F〉, w ∈ Σ∗

Question: w ∈ L(A)?
Procedure: Computation of the reachability set

RA(w) := {q ∈ Q | q0
w−→ q}

Iterative procedure for w = a1 . . . an:
1. let RA(ε) := {q0}
2. for i := 1, . . . , n: let

RA(a1 . . . ai) := {q ∈ Q | ∃p ∈ RA(a1 . . . ai−1) : p
ai−→ q}

Output: “yes” if RA(w) ∩ F 6= ∅, otherwise “no”

Remark: this algorithm solves the word problem for NFA

Example A.25

on the board
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Finite Automata

NFA-Recognisability of Concatenation

Definition of NFA looks promising, but... (on the board)

Solution: admit empty word ε as transition label
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Finite Automata

ε-NFA

Definition A.26

A nondeterministic finite automaton with ε-transitions (ε-NFA) is of the form
A = 〈Q,Σ,∆, q0, F〉 where
• Q is a finite set of states
• Σ denotes the input alphabet
• ∆ ⊆ Q × Σε × Q is the transition relation where Σε := Σ ∪ {ε}
• q0 ∈ Q is the initial state
• F ⊆ Q is the set of final states

Remarks:
• every NFA is an ε-NFA
• definitions of runs and acceptance: in analogy to NFA

Example A.27

on the board
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Finite Automata

Concatenation and Iteration via ε-NFA

Theorem A.28

If L1, L2 ⊆ Σ∗ are ε-NFA-recognisable, then so is L1 · L2.

Proof (idea).

on the board

Theorem A.29

If L ⊆ Σ∗ is ε-NFA-recognisable, then so is L∗.

Proof.

see Theorem A.47
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Finite Automata

Syntax Diagrams as ε-NFA

Syntax diagrams (without recursive calls) can be interpreted as ε-NFA

Example A.30

decimal numbers (on the board)
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Finite Automata

Types of Finite Automata

1. DFA (Definition A.8)
2. NFA (Definition A.22)
3. ε-NFA (Definition A.26)

From the definitions we immediately obtain:

Corollary A.31

1. Every DFA-recognisable language is NFA-recognisable.
2. Every NFA-recognisable language is ε-NFA-recognisable.

Goal: establish reverse inclusions
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Finite Automata

From NFA to DFA I

Theorem A.32

Every NFA can be transformed into an equivalent DFA.

Proof.

Idea: let the DFA operate on sets of states (“powerset construction”)
• Initial state of DFA := {initial state of NFA}
• P a−→ P ′ in DFA iff there exist q ∈ P, q′ ∈ P ′ such that q a−→ q′ in NFA
• P final state in DFA iff it contains some final state of NFA
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Finite Automata

From NFA to DFA II

Proof (continued).

Let A = 〈Q,Σ,∆, q0, F〉 be a NFA.
Powerset construction of A′ = 〈Q′,Σ, δ′, q′0, F

′〉:
• Q′ := 2Q := {P | P ⊆ Q}
• δ′ : Q′ × Σ→ Q′ with

q ∈ δ′(P, a) ⇐⇒ there exists p ∈ P such that (p, a, q) ∈ ∆
• q′0 := {q0}
• F ′ := {P ⊆ Q | P ∩ F 6= ∅}

This yields
q0

w−→ q in A ⇐⇒ q ∈ δ′∗({q0},w) in A′

and thus
A accepts w ⇐⇒ A′ accepts w

Example A.33

on the board
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Finite Automata

From ε-NFA to NFA

Theorem A.34

Every ε-NFA can be transformed into an equivalent NFA.

Proof (idea).

Let A = 〈Q,Σ,∆, q0, F〉 be a ε-NFA. We construct the NFA A′ by eliminating all
ε-transitions, adding appropriate direct transitions: if p

ε−→
∗

q, q
a−→ q′, and

q′
ε−→
∗

r in A, then p
a−→ r in A′. Moreover F ′ := F ∪ {q0} if q0

ε−→
∗

q ∈ F in A,
and F ′ := F otherwise.

Example A.35

on the board

Corollary A.36

All types of finite automata recognise the same class of languages.
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Finite Automata

Nondeterministic Finite Automata

Seen:
• Definition of ε-NFA
• Determinisation of (ε-)NFA

Open:
• More decidablity results
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Finite Automata

Outline of Part A

Formal Languages

Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook
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Finite Automata

The Word Problem Revisited

Definition A.37

The word problem for DFA is specified as follows:

Given a DFA A and a word w ∈ Σ∗, decide whether

w ∈ L(A).

As we have seen (Def. A.10, Alg. A.24, Thm. A.34):

Theorem A.38

The word problem for DFA (NFA, ε-NFA) is decidable.
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Finite Automata

The Emptiness Problem

Definition A.39

The emptiness problem for DFA is specified as follows:

Given a DFA A, decide whether L(A) = ∅.

Theorem A.40

The emptiness problem for DFA (NFA, ε-NFA) is decidable.

Proof.

It holds that L(A) 6= ∅ iff in A some final state is reachable from the initial state
(simple graph-theoretic problem).

Remark: important result for formal verification
(unreachability of bad [= final] states)
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Finite Automata

The Equivalence Problem

Definition A.41

The equivalence problem for DFA is specified as follows:

Given two DFA A1,A2, decide whether
L(A1) = L(A2).

Theorem A.42

The equivalence problem for DFA (NFA, ε-NFA) is decidable.

Proof.
L(A1) = L(A2)

⇐⇒ L(A1) ⊆ L(A2) and L(A2) ⊆ L(A1)
⇐⇒ (L(A1) \ L(A2)) ∪ (L(A2) \ L(A1)) = ∅
⇐⇒ (L(A1) ∩ L(A2)︸ ︷︷ ︸

DFA-recognisable (Thm. A.14)

)︸ ︷︷ ︸
DFA-recognisable (Thm. A.16)

∪ (L(A2) ∩ L(A1)︸ ︷︷ ︸
DFA-recognisable (Thm. A.14)

)︸ ︷︷ ︸
DFA-recognisable (Thm. A.16)︸ ︷︷ ︸

DFA-recognisable (Thm. A.18)

= ∅

︸ ︷︷ ︸
decidable (Thm. A.40)
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Finite Automata

Finite Automata

Seen:
• Decidability of word problem
• Decidability of emptiness problem
• Decidability of equivalence problem

Open:
• Non-algorithmic description of languages
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Regular Expressions

Outline of Part A

Formal Languages

Finite Automata
Deterministic Finite Automata
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Regular Expressions

An Example

Example A.43

Consider the set of all words over Σ := {a, b} which
1. start with one or three a symbols
2. continue with a (potentially empty) sequence of blocks, each containing at least one b and

exactly two a’s
3. conclude with a (potentially empty) sequence of b’s

Corresponding regular expression:

(a + aaa)(bb∗ab∗ab∗︸ ︷︷ ︸
b before a’s

+ b∗abb∗ab∗︸ ︷︷ ︸
b between a’s

+ b∗ab∗abb∗︸ ︷︷ ︸
b after a’s

)∗b∗
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Regular Expressions

Syntax of Regular Expressions

Definition A.44

The set of regular expressions over Σ is inductively defined by:
• ∅ and ε are regular expressions
• every a ∈ Σ is a regular expression
• if α and β are regular expressions, then so are

– α + β
– α · β
– α∗

Notation:
• · can be omitted
• ∗ binds stronger than ·, · binds stronger than +

• α+ abbreviates α · α∗
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Regular Expressions

Semantics of Regular Expressions

Definition A.45

Every regular expression α defines a language L(α):

L(∅) := ∅
L(ε) := {ε}
L(a) := {a}

L(α + β) := L(α) ∪ L(β)

L(α · β) := L(α) · L(β)

L(α∗) := (L(α))∗

A language L is called regular if it is definable by a regular expression, i.e., if
L = L(α) for some regular expression α.
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Regular Expressions

Regular Languages

Example A.46

1. {aa} is regular since

L(a · a) = L(a) · L(a) = {a} · {a} = {aa}

2. {a, b}∗ is regular since

L((a + b)∗) = (L(a + b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = {a, b}∗

3. The set of all words over {a, b} containing abb is regular since

L((a + b)∗ · a · b · b · (a + b)∗) = {a, b}∗ · {abb} · {a, b}∗

53 of 67 Foundations of Informatics/Formal Languages and Semantics, Part A
Thomas Noll
b-it Bonn, 16-20 March 2015



Regular Expressions

Regular Languages

Example A.46

1. {aa} is regular since

L(a · a) = L(a) · L(a) = {a} · {a} = {aa}

2. {a, b}∗ is regular since

L((a + b)∗) = (L(a + b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = {a, b}∗

3. The set of all words over {a, b} containing abb is regular since

L((a + b)∗ · a · b · b · (a + b)∗) = {a, b}∗ · {abb} · {a, b}∗

53 of 67 Foundations of Informatics/Formal Languages and Semantics, Part A
Thomas Noll
b-it Bonn, 16-20 March 2015



Regular Expressions

Regular Languages

Example A.46

1. {aa} is regular since

L(a · a) = L(a) · L(a) = {a} · {a} = {aa}

2. {a, b}∗ is regular since

L((a + b)∗) = (L(a + b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = {a, b}∗

3. The set of all words over {a, b} containing abb is regular since

L((a + b)∗ · a · b · b · (a + b)∗) = {a, b}∗ · {abb} · {a, b}∗

53 of 67 Foundations of Informatics/Formal Languages and Semantics, Part A
Thomas Noll
b-it Bonn, 16-20 March 2015



Regular Expressions

Regular Languages and Finite Automata I

Theorem A.47 (Kleene’s Theorem)

To each regular expression there corresponds an ε-NFA, and vice versa.

Proof.

=⇒ using induction over the given regular expression α, we construct an ε-NFA
Aα

• with exactly one final state qf

• without transitions into the initial state
• without transitions leaving the final state

(on the board)
⇐= by solving a regular equation system (details omitted)
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Regular Expressions

Regular Languages and Finite Automata II

Corollary A.48

The following properties are equivalent:
• L is regular
• L is DFA-recognisable
• L is NFA-recognisable
• L is ε-NFA-recognisable
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Regular Expressions

Implementation of Pattern Matching

Algorithm A.49 (Pattern Matching)

Input: regular expression α and w ∈ Σ∗

Question: does w contain some v ∈ L(α)?
Procedure: 1. let β := (a1 + . . . + an)∗ · α (for Σ = {a1, . . . , an})

2. determine ε-NFA Aβ for β
3. eliminate ε-transitions
4. apply powerset construction to obtain DFA A
5. let A run on w

Output: “yes” if A passes through some final state, otherwise “no”

Remark: in UNIX/LINUX implemented by grep and lex
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Regular Expressions

Regular Expressions in UNIX (grep, flex, ...)
Syntax Meaning
printable character this character
\n, \t, \123, etc. newline, tab, octal representation, etc.
. any character except \n
[Chars] one of Chars; ranges possible (“0-9”)
[^Chars] none of Chars
\\, \., \[, etc. \, ., [, etc.
"Text" Text without interpretation of ., [, \, etc.
^α α at beginning of line
α$ α at end of line
α? zero or one α
α* zero or more α
α+ one or more α
α{n,m} between n and m times α (“,m” optional)
(α) α
α1α2 concatenation
α1|α2 alternative
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Regular Expressions

Regular Expressions

Seen:
• Definition of regular expressions
• Equivalence of regular and DFA-recognisable languages
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Minimisation of DFA

Motivation

Goal: space-efficient implementation of regular languages
Given: DFA A = 〈Q,Σ, δ, q0, F〉

Wanted: DFA Amin = 〈Q′,Σ, δ′, q′0, F
′〉 such that L(Amin) = L(A) and |Q′| minimal
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Minimisation of DFA

State Equivalence

Example A.50

NFA for accepting (a + b)∗ab(a + b)∗:

q0 q1 q2

a, b

a b

a, b

Powerset construction yields DFA A:

{q0} {q0, q1} {q0, q2} {q0, q1, q2}

b

a

a

b

b
a

a

b

Observation: {q0, q2} and {q0, q1, q2} are equivalent

Definition A.51

Given DFA A = 〈Q,Σ, δ, q0, F〉, states p, q ∈ Q are equivalent if
∀w ∈ Σ∗ : δ∗(p,w) ∈ F ⇐⇒ δ∗(q,w) ∈ F .
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∀w ∈ Σ∗ : δ∗(p,w) ∈ F ⇐⇒ δ∗(q,w) ∈ F .
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Minimisation of DFA

Minimisation

Minimisation: merging of equivalent states

Example A.52 (cf. Example A.50)

DFA after state merging:

· · ·
b

a
a

b
a, b

Problem: identification of equivalent states
Approach: iterative computation of inequivalent states by refinement

Corollary A.53

p, q ∈ Q are inequivalent if there exists w ∈ Σ∗ such that
δ∗(p,w) ∈ F and δ∗(q,w) /∈ F

(or vice versa, i.e., p and q can be distinguished by w)
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Minimisation of DFA

Computing State (In-)Equivalence

Lemma A.54

Inductive characterisation of state inequivalence:
• w = ε: p ∈ F , q /∈ F =⇒ p, q inequivalent (by ε)
• w = av: p′, q′ inequivalent (by v), p a−→ p′, q a−→ q′

=⇒ p, q inequivalent (by w)

Algorithm A.55 (State Equivalence for DFA)

Input: DFA A = 〈Q,Σ,∆, q0, F〉
Procedure: Computation of “equivalence matrix” over Q × Q

1. mark every pair (p, q) with p ∈ F , q /∈ F by ε
2. for every unmarked pair (p, q) and every a ∈ Σ:

if (δ(p, a), δ(q, a)) marked by v, then mark (p, q) by av
3. repeat until no change

Output: all equivalent (= unmarked) pairs of states
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Minimisation of DFA

Minimisation Example

Example A.56

Given DFA:

q0 q1 q2

q3 q4 q5

a

b

a

b

a
b

a
b

a
b a, b

Equivalence matrix: on the board

Resulting minimal DFA:

{q0} {q1, q3} {q2, q4} {q5}
a, b

b
a

a

b

a, b
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Minimisation of DFA

Correctness of Minimisation

Theorem A.57

For every DFA A,
L(A) = L(Amin)

Remark: the minimal DFA is unique, in the following sense:

∀DFA A,B : L(A) = L(B) =⇒ Amin ≈ Bmin

where ≈ refers to automata isomorphism (= identity up to naming of states)
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Outlook

Outline of Part A

Formal Languages

Finite Automata
Deterministic Finite Automata
Operations on Languages and Automata
Nondeterministic Finite Automata
More Decidability Results

Regular Expressions

Minimisation of DFA

Outlook
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Outlook

Outlook
• Pumping Lemma (to prove non-regularity of languages)

– can be used to show that {anbn | n ≥ 1} is not regular

• More language operations (homomorphisms, ...)
• Construction of scanners for compilers
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