

Foundations of Informatics: a Bridging Course

Week 4: Formal Languages and Semantics
Part B: Context-Free Languages
b-it Bonn, 16-20 March 2015
Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University
http://moves.rwth-aachen.de/teaching/ws-1415/foi/

Context-Free Grammars and Languages

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

Context-Free Grammars and Languages

Introductory Example I

Example B. 1

Syntax definition of programming languages by "Backus-Naur" rules Here: simple arithmetic expressions

$$
\begin{aligned}
\langle\text { Expression }\rangle::= & 0 \\
& \mid \\
\mid & \langle\text { Expression }\rangle+\langle\text { Expression }\rangle \\
\mid & \langle\text { Expression }\rangle *\langle\text { Expression }\rangle \\
& (\langle\text { Expression }\rangle)
\end{aligned}
$$

Meaning:
An expression is either 0 or 1 , or it is of the form $u+v, u * v$, or (u) where u, v are again expressions

Context-Free Grammars and Languages

Introductory Example II

Example B. 2 (continued)

Here we abbreviate 〈Expression〉 as E, and use " \rightarrow " instead of "::=".
Thus:

$$
E \rightarrow 0|1| E+E|E * E|(E)
$$

Context-Free Grammars and Languages

Introductory Example II

Example B. 2 (continued)

Here we abbreviate 〈Expression〉 as E, and use " \rightarrow " instead of "::=".
Thus:

$$
E \rightarrow 0|1| E+E|E * E|(E)
$$

Now expressions can be generated by applying rules to the start symbol E :

$$
\begin{aligned}
E & \Rightarrow E * E \\
& \Rightarrow(E) * E \\
& \Rightarrow(E) * 1 \\
& \Rightarrow(E+E) * 1 \\
& \Rightarrow(0+E) * 1 \\
& \Rightarrow(0+1) * 1
\end{aligned}
$$

Context-Free Grammars and Languages

Context-Free Grammars I

Definition B. 3

A context-free grammar (CFG) is a quadruple

$$
G=\langle N, \Sigma, P, S\rangle
$$

where

- N is a finite set of nonterminal symbols
- Σ is the (finite) alphabet of terminal symbols (disjoint from N)
- P is a finite set of production rules of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in(N \cup \Sigma)^{*}$
- $S \in N$ is a start symbol

Context-Free Grammars and Languages

Context-Free Grammars II

Example B. 4

For the above example, we have:

- $N=\{E\}$
- $\Sigma=\{0,1,+, *,()$,
- P $=\{E \rightarrow 0, E \rightarrow 1, E \rightarrow E+E, E \rightarrow E * E, E \rightarrow(E)\}$
- $S=E$

Context-Free Grammars and Languages

Context-Free Grammars II

Example B. 4

For the above example, we have:

- $N=\{E\}$
- $\Sigma=\{0,1,+, *,()$,
- P $=\{E \rightarrow 0, E \rightarrow 1, E \rightarrow E+E, E \rightarrow E * E, E \rightarrow(E)\}$
- $S=E$

Naming conventions:

- nonterminals start with uppercase letters
- terminals start with lowercase letters
- start symbol = symbol on LHS of first production
\Longrightarrow grammar completely defined by productions

Context-Free Grammars and Languages

Context-Free Languages I

Definition B. 5

Let $G=\langle N, \Sigma, P, S\rangle$ be a CFG.

- A sentence $\gamma \in(N \cup \Sigma)^{*}$ is directly derivable from $\beta \in(N \cup \Sigma)^{*}$ if there exist $\pi=A \rightarrow \alpha \in P$ and $\delta_{1}, \delta_{2} \in(N \cup \Sigma)^{*}$ such that $\beta=\delta_{1} \boldsymbol{A} \delta_{2}$ and $\gamma=\delta_{1} \alpha \delta_{2}$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length n) of γ from β is a sequence of direct derivations of the form $\delta_{0} \Rightarrow \delta_{1} \Rightarrow \ldots \Rightarrow \delta_{n}$ where $\delta_{0}=\beta, \delta_{n}=\gamma$, and $\delta_{i-1} \Rightarrow \delta_{i}$ for every $1 \leq i \leq n$ (notation: $\left.\beta \Rightarrow^{*} \gamma\right)$.
- A word $w \in \Sigma^{*}$ is called derivable in G if $S \Rightarrow^{*} w$.

Context-Free Grammars and Languages

Context-Free Languages I

Definition B. 5

Let $G=\langle N, \Sigma, P, S\rangle$ be a CFG.

- A sentence $\gamma \in(N \cup \Sigma)^{*}$ is directly derivable from $\beta \in(N \cup \Sigma)^{*}$ if there exist $\pi=A \rightarrow \alpha \in P$ and $\delta_{1}, \delta_{2} \in(N \cup \Sigma)^{*}$ such that $\beta=\delta_{1} \boldsymbol{A} \delta_{2}$ and $\gamma=\delta_{1} \alpha \delta_{2}$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$ or just $\beta \Rightarrow \gamma$).
- A derivation (of length n) of γ from β is a sequence of direct derivations of the form $\delta_{0} \Rightarrow \delta_{1} \Rightarrow \ldots \Rightarrow \delta_{n}$ where $\delta_{0}=\beta, \delta_{n}=\gamma$, and $\delta_{i-1} \Rightarrow \delta_{i}$ for every $1 \leq i \leq n$ (notation: $\left.\beta \Rightarrow^{*} \gamma\right)$.
- A word $w \in \Sigma^{*}$ is called derivable in G if $S \Rightarrow^{*} w$.
- The language generated by G is $L(G):=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}$.
- A language $L \subseteq \Sigma^{*}$ is called context-free (CFL) if it is generated by some CFG.
- Two grammars G_{1}, G_{2} are equivalent if $L\left(G_{1}\right)=L\left(G_{2}\right)$.

Context-Free Grammars and Languages

Context-Free Languages II

Example B. 6

The language $\left\{a^{n} b^{n} \mid n \geq 1\right\}$ is context-free. It is generated by the grammar $G=\langle N, \Sigma, P, S\rangle$ with

- $N=\{S\}$
- $\Sigma=\{a, b\}$
- $P=\{S \rightarrow a S b \mid a b\}$
(proof: on the board)

Context-Free Grammars and Languages

Context-Free Languages II

Example B. 6

The language $\left\{a^{n} b^{n} \mid n \geq 1\right\}$ is context-free. It is generated by the grammar $G=\langle N, \Sigma, P, S\rangle$ with

- $N=\{S\}$
- $\Sigma=\{a, b\}$
- $P=\{S \rightarrow a S b \mid a b\}$
(proof: on the board)
Remark: illustration of derivations by derivation trees
- root labelled by start symbol
- leafs labelled by terminal symbols
- successors of node labelled according to right-hand side of production rule (example on the board)

Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Open:

- Relation between context-free and regular languages

Context-Free vs. Regular Languages

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

Context-Free vs. Regular Languages

Context-Free vs. Regular Languages

Theorem B. 7

1. Every regular language is context-free.
2. There exist CFLs which are not regular.
(In other words: the class of regular languages is a proper subset of the class of CFLs.)

Context-Free vs. Regular Languages

Context-Free vs. Regular Languages

Theorem B. 7

1. Every regular language is context-free.
2. There exist CFLs which are not regular.
(In other words: the class of regular languages is a proper subset of the class of CFLs.)

Proof.

1. Let L be a regular language, and let $\mathfrak{A}=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ be a DFA which recognises L. $G:=\langle N, \Sigma, P, S\rangle$ is defined as follows:
$-N:=Q, S:=q_{0}$

- if $\delta(q, a)=q^{\prime}$, then $q \rightarrow a q^{\prime} \in P$
- if $q \in F$, then $q \rightarrow \varepsilon \in P$

Obviously a w-labelled run in \mathfrak{A} from q_{0} to F corresponds to a derivation of w in G, and vice versa. Thus $L(\mathfrak{A})=L(G)$ (example on the board).
2. An example is $\left\{a^{n} b^{n} \mid n \geq 1\right\}$ (see Ex. B.6).

Context-Free vs. Regular Languages

Context-Free Grammars and Languages

Seen:

- CFLs are more expressive than regular languages

Context-Free vs. Regular Languages

Context-Free Grammars and Languages

Seen:

- CFLs are more expressive than regular languages

Open:

- Decidability of word problem

The Word Problem for CFLs

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

The Word Problem for CFLs

The Word Problem

- Goal: given $G=\langle N, \Sigma, P, S\rangle$ and $w \in \Sigma^{*}$, decide whether $w \in L(G)$ or not
- For regular languages this was easy: just let the corresponding DFA run on w.
- But here: how to decide when to stop a derivation?
- Solution: establish normal form for grammars which guarantees that each nonterminal produces at least one terminal symbol
\Longrightarrow only finitely many combinations to be inspected

The Word Problem for CFLs

Chomsky Normal Form I

Definition B. 8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$
A \rightarrow B C \quad \text { or } \quad A \rightarrow a
$$

The Word Problem for CFLs

Chomsky Normal Form I

Definition B. 8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$
A \rightarrow B C \quad \text { or } \quad A \rightarrow a
$$

Example B. 9

Let $S \rightarrow a b \mid a S b$ be the grammar which generates $L:=\left\{a^{n} b^{n} \mid n \geq 1\right\}$. An equivalent grammar in Chomsky NF is

$$
\begin{array}{ll}
S \rightarrow A B \mid A C & \text { (generates } L \text {) } \\
A \rightarrow a & \text { (generates }\{a\}) \\
B \rightarrow b & \text { (generates }\{b\} \text {) } \\
C \rightarrow S B & \text { (generates }\left\{a^{n} b^{n+1} \mid n \geq 1\right\} \text {) }
\end{array}
$$

The Word Problem for CFLs

Chomsky Normal Form II

Theorem B. 10

Every CFL L (with $\varepsilon \notin L$) is generatable by a CFG in Chomsky NF.

The Word Problem for CFLs

Chomsky Normal Form II

Theorem B. 10

Every CFL L (with $\varepsilon \notin L$) is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let $G=\langle N, \Sigma, P, S\rangle$ be some CFG which generates L. The transformation of P into rules of the form $A \rightarrow B C$ and $A \rightarrow a$ proceeds in three steps:

1. terminal symbols only in rules of the form $A \rightarrow a$ (thus all other rules have the shape $A \rightarrow A_{1} \ldots A_{n}$)
2. elimination of "chain rules" of the form $A \rightarrow B$
3. elimination of rules of the form $A \rightarrow A_{1} \ldots A_{n}$ where $n>2$ (details omitted)

The Word Problem for CFLs

The Word Problem Revisited

Goal: given $w \in \Sigma^{+}$and $G=\langle N, \Sigma, P, S\rangle$ such that $\varepsilon \notin L(G)$, decide if $w \in L(G)$ or not
(If $w=\varepsilon$, then $w \in L(G)$ easily decidable for arbitrary G)
Approach by Cocke, Younger, Kasami (CYK algorithm):

1. transform G into Chomsky NF
2. let $w=a_{1} \ldots a_{n}(n \geq 1)$
3. let $w[i, j]:=a_{i} \ldots a_{j}$ for every $1 \leq i \leq j \leq n$
4. consider segments $w[i, j]$ in order of increasing length, starting with $w[i, i]$ (i.e., single letters)
5. in each case, determine $N_{i, j}:=\left\{A \in N \mid A \Rightarrow^{*} w[i, j]\right\}$
6. test whether $S \in N_{1, n}$ (and thus, whether $S \Rightarrow^{*} w[1, n]=w$)

The Word Problem for CFLs

The CYK Algorithm I

Algorithm B. 11 (CYK Algorithm)

Input: $G=\langle N, \Sigma, P, S\rangle$ in Chomsky NF, $w=a_{1} \ldots a_{n} \in \Sigma^{+}$
Question: $w \in L(G)$?
Procedure: for $i:=1$ to n do

$$
\begin{aligned}
& \qquad N_{i, i}:=\left\{A \in N \mid A \rightarrow a_{i} \in P\right\} \\
& \text { next } i \\
& \text { for } d:=1 \text { to } n-1 \text { do \% compute } N_{i, i+d} \\
& \text { for } i:=1 \text { to } n-d \text { do } \\
& j:=i+d ; N_{i, j}:=\emptyset ; \\
& \text { for } k:=i \text { to } j-1 \text { do } \\
& N_{i, j}:=N_{i, j} \cup\{A \in N \mid \text { there is } A \rightarrow B C \in P \\
& \text { next } k \\
& \text { with } \left.B \in N_{i, k}, C \in N_{k+1, j}\right\}
\end{aligned}
$$

The Word Problem for CFLs

The CYK Algorithm II

Example B. 12

- $G: S \rightarrow S A \mid a$
$A \rightarrow B S$
$B \rightarrow B B|B S| b \mid c$
- $w=a b a a b a$
- Matrix representation of $N_{i, j}$
(on the board)

The Word Problem for CFLs

The Word Problem for Context-Free Languages

Seen:

- Word problem decidable using CYK algorithm

The Word Problem for CFLs

The Word Problem for Context-Free Languages

Seen:

- Word problem decidable using CYK algorithm

Open:

- Emptiness problem

The Emptiness Problem for CFLs

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

The Emptiness Problem for CFLs

The Emptiness Problem

- Goal: given $G=\langle N, \Sigma, P, S\rangle$, decide whether $L(G)=\emptyset$ or not
- For regular languages this was easy: check in the corresponding DFA whether some final state is reachable from the initial state.
- Here: test whether start symbol is productive, i.e., whether it generates a terminal word

The Emptiness Problem for CFLs

The Emptiness Test

```
Algorithm B. }13\mathrm{ (Emptiness Test)
    Input: G = <N, \Sigma,P,S\rangle
Question: L(G)=\emptyset ?
Procedure: mark every a }\in\Sigma\mathrm{ as productive;
    repeat
            if there is A->\alpha\inP such that
                all symbols in \alpha productive then
                mark A as productive;
            end;
    until no further productive symbols found;
Output: "no" if S productive, otherwise "yes"
```


The Emptiness Problem for CFLs

The Emptiness Test

```
Algorithm B. }13\mathrm{ (Emptiness Test)
    Input: G = <N, \Sigma,P,S\rangle
Question: L(G)=\emptyset ?
Procedure: mark every a }\in\Sigma\mathrm{ as productive;
    repeat
            if there is A->\alpha\inP such that
                all symbols in \alpha productive then
                mark A as productive;
            end;
    until no further productive symbols found;
Output: "no" if S productive, otherwise "yes"
```

```
Example B. }1
```

$$
\begin{aligned}
G: & S \rightarrow A B \mid C A \\
& A \rightarrow a \\
B & \rightarrow B C \mid A B \\
& C \rightarrow a B \mid b
\end{aligned}
$$

(on the board)

The Emptiness Problem for CFLs

The Emptiness Problem for CFLs

Seen:

- Emptiness problem decidable based on productivity of symbols

The Emptiness Problem for CFLs

The Emptiness Problem for CFLs

Seen:

- Emptiness problem decidable based on productivity of symbols

Open:

- Closure properties of CFLs

Closure Properties of CFLs

Outline of Part B

Context-Free Grammars and Languages Context-Free vs. Regular Languages The Word Problem for CFLs The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

Closure Properties of CFLs

Positive Results

Theorem B. 15

The set of CFLs is closed under concatenation, union, and iteration.

Closure Properties of CFLs

Positive Results

Theorem B. 15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$. Then

Closure Properties of CFLs

Positive Results

Theorem B. 15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$. Then

- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and $P:=\left\{S \rightarrow S_{1} S_{2}\right\} \cup P_{1} \cup P_{2}$ generates $L_{1} \cdot L_{2}$;

Closure Properties of CFLs

Positive Results

Theorem B. 15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$. Then

- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and $P:=\left\{S \rightarrow S_{1} S_{2}\right\} \cup P_{1} \cup P_{2}$ generates $L_{1} \cdot L_{2}$;
- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and $P:=\left\{S \rightarrow S_{1} \mid S_{2}\right\} \cup P_{1} \cup P_{2}$ generates $L_{1} \cup L_{2}$; and

Closure Properties of CFLs

Positive Results

Theorem B. 15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For $i=1,2$, let $G_{i}=\left\langle N_{i}, \Sigma, P_{i}, S_{i}\right\rangle$ with $L_{i}:=L\left(G_{i}\right)$ and $N_{1} \cap N_{2}=\emptyset$. Then

- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and $P:=\left\{S \rightarrow S_{1} S_{2}\right\} \cup P_{1} \cup P_{2}$ generates $L_{1} \cdot L_{2} ;$
- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1} \cup N_{2}$ and $P:=\left\{S \rightarrow S_{1} \mid S_{2}\right\} \cup P_{1} \cup P_{2}$ generates $L_{1} \cup L_{2}$; and
- $G:=\langle N, \Sigma, P, S\rangle$ with $N:=\{S\} \cup N_{1}$ and $P:=\left\{S \rightarrow \varepsilon \mid S_{1} S\right\} \cup P_{1}$ generates L_{1}^{*}.

Closure Properties of CFLs

Negative Results

Theorem B. 16

The set of CFLs is not closed under intersection and complement.

Closure Properties of CFLs

Negative Results

Theorem B. 16

The set of CFLs is not closed under intersection and complement.

Proof.

- Both $L_{1}:=\left\{a^{k} b^{k} c^{\prime} \mid k, I \in \mathbb{N}\right\}$ and $L_{2}:=\left\{a^{k} b^{\prime} c^{\prime} \mid k, I \in \mathbb{N}\right\}$ are CFLs, but not $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}$ (without proof).

Closure Properties of CFLs

Negative Results

Theorem B. 16

The set of CFLs is not closed under intersection and complement.

Proof.

- Both $L_{1}:=\left\{a^{k} b^{k} c^{\prime} \mid k, I \in \mathbb{N}\right\}$ and $L_{2}:=\left\{a^{k} b^{\prime} c^{\prime} \mid k, l \in \mathbb{N}\right\}$ are CFLs, but not $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \in \mathbb{N}\right\}$ (without proof).
- If CFLs were closed under complement, then also under intersection (as $L_{1} \cap L_{2}=\overline{\overline{L_{1}}} \cup \overline{L_{2}}$).

Closure Properties of CFLs

Overview of Decidability and Closure Results

Decidability Results			
Class	$w \in L$	$L=\emptyset$	$L_{1}=L_{2}$
Reg	$+(\mathrm{A} .38)$	$+(\mathrm{A} .40)$	$+(\mathrm{A} .42)$
CFL	$+(\mathrm{B} .11)$	$+(\mathrm{B} .13)$	-

Closure Properties of CFLs

Overview of Decidability and Closure Results

Decidability Results			
Class	$w \in L$	$L=\emptyset$	$L_{1}=L_{2}$
Reg	$+(\mathrm{A} .38)$	$+(\mathrm{A} .40)$	$+(\mathrm{A} .42)$
CFL	$+(\mathrm{B} .11)$	$+(\mathrm{B} .13)$	-

Closure Results					
Class	$L_{1} \cdot L_{2}$	$L_{1} \cup L_{2}$	$L_{1} \cap L_{2}$	\bar{L}	L^{*}
Reg	$+(\mathrm{A} .28)$	$+(\mathrm{A} .18)$	$+(\mathrm{A} .16)$	$+(\mathrm{A} .14)$	$+(\mathrm{A} .29)$
CFL	$+(\mathrm{B} .15)$	$+(\mathrm{B} .15)$	$-(\mathrm{B} .16)$	$-(\mathrm{B} .16)$	$+(\mathrm{B} .15)$

Outlook

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

Outlook

Outlook

- Pushdown automata (PDA)
- Equivalence problem for CFG and PDA (" $L\left(X_{1}\right)=L\left(X_{2}\right)$?") (generally undecidable, decidable for DPDA)
- Pumping Lemma for CFL
- Greibach Normal Form for CFG
- Construction of parsers for compilers
- Non-context-free grammars and languages (context-sensitive and recursively enumerable languages, Turing machines-see Week 3)

