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Context-Free Grammars and Languages

Introductory Example |
Example B.1

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

(Expression)

Expression) x ( Expression)

=0
;
(Expression) + ( Expression)
<
((Expression))

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u x v, or (u) where u, v
are again expressions

Thomas Noll
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Context-Free Grammars and Languages

Introductory Exampile Il

Example B.2 (continued)

Here we abbreviate ( Expression) as E, and use “—” instead of “::=".
Thus:

E—O0|1|E+E|ExE]|(E)
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Context-Free Grammars and Languages

Introductory Exampile Il

Example B.2 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=".
Thus:
E —O0|1|E+E|ExE|(E)
Now expressions can be generated by applying rules to the start symbol E:

E = ExE
= (E)x E

=
—
=
—

RWTH
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Context-Free Grammars and Languages

Context-Free Grammars |

Definition B.3
A context-free grammar (CFQG) is a quadruple

G=(N,L,P,S)

where
e N is a finite set of nonterminal symbols
e 2 is the (finite) alphabet of terminal symbols (disjoint from N)
e Pis a finite set of production rules of the form A — awhere A€ Nand a € (NU X)*
e S € Nis a start symbol
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Context-Free Grammars and Languages

Context-Free Grammars Il

Example B.4

For the above example, we have:

o N={E}

QZ:{O,‘I,—I—,*,(,)}
oeP={E—-0,E—-1E—-E+EE—ExEE—(E)}

e S=E
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Context-Free Grammars and Languages

Context-Free Grammars Il

Example B.4

For the above example, we have:

o N={E}

QZ:{O,‘I,—I—,*,(,)}
oeP={E—-0,E—-1E—-E+EE—ExEE—(E)}
e S=E

Naming conventions:
e nonterminals start with uppercase letters
e terminals start with lowercase letters
e start symbol = symbol on LHS of first production
—> grammar completely defined by productions

RWTH
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Context-Free Grammars and Languages

Context-Free Languages |

Definition B.5
Let G= (N,X, P,S) be a CFG.
e A sentence v € (N U X)* is directly derivable from 5 € (N U ¥)* if there exist

T=A— a € Pandéy,d € (NUX)* such that 5 = §;Ad, and v = d1ad, (notation: 5 = v
orjust 8 = 7).

e A derivation (of length n) of v from 3 is a sequence of direct derivations of the form
do = 01 = ... = d0pWhere 6g = 3, 0, = 7, and 6,_1 = ¢, for every 1 < i < n (notation:
B =)

e Aword w € X" is called derivable in Gif S =* w.

RWTH
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Context-Free Grammars and Languages

Context-Free Languages |

Definition B.5
Let G= (N,X, P,S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— a € Pandéy,d € (NUX)* such that 5 = §;Ad, and v = d1ad, (notation: 5 = v
orjust 8 = 7).

e A derivation (of length n) of v from 3 is a sequence of direct derivations of the form
do = 01 = ... = d0pWhere 6g = 3, 0, = 7, and 6,_1 = ¢, for every 1 < i < n (notation:
B =)

e Aword w € ¥" is called derivable in G if S =" w.

e The language generated by Gis L(G) :={w € ¥* | S =* w}.

e Alanguage L C X" is called context-free (CFL) if it is generated by some CFG.

e Two grammars Gy, G, are equivalent if L(G;) = L(Go).

RWTH
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Context-Free Grammars and Languages

Context-Free Languages Il

Example B.6

The language {a"b"” | n > 1} is context-free. It is generated by the grammar
G=(N,%, P,S) with

o N={S}

oY ={a,b}

o P={S — aSb | ab}
(proof: on the board)

RWTH
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Context-Free Grammars and Languages

Context-Free Languages i

Example B.6

The language {a"b"” | n > 1} is context-free. It is generated by the grammar
G=(N,%, P,S) with

o N={S}

oY ={a,b}

o P={S — aSb | ab}
(proof: on the board)

Remark: illustration of derivations by derivation trees
e root labelled by start symbol
e leafs labelled by terminal symbols
e successors of node labelled according to right-hand side of production rule

(example on the board)

RWTH
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Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:
e Context-free grammars
e Derivations
e Context-free languages
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Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:
e Context-free grammars
e Derivations
e Context-free languages

Open:
e Relation between context-free and regular languages
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Context-Free vs. Regular Languages

Outline of Part B

Context-Free vs. Regular Languages
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Context-Free vs. Regular Languages

Context-Free vs. Regular Languages

Theorem B.7

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the class of
CFLs.)
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Context-Free vs. Regular Languages

Context-Free vs. Regular Languages

Theorem B.7

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the class of
CFLs.)

Proof.

1. Let L be a regular language, and let 2l = (Q, ¥, 6, qo, F) be a DFA which recognises L.
G := (N,X, P, S) is defined as follows:
-N:=Q,S:= q
—ifd(g,a) = ¢, theng — aqg € P
—-ifge F,theng — ¢ € P
Obviously a w-labelled run in 2 from qg to F corresponds to a derivation of w in G, and vice
versa. Thus L(2l) = L(G)
(example on the board).

2. An example is {@"b" | n > 1} (see Ex. B.6). O]
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Context-Free vs. Regular Languages

Context-Free Grammars and Languages

Seen:
e CFLs are more expressive than regular languages
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Context-Free vs. Regular Languages

Context-Free Grammars and Languages

Seen:
e CFLs are more expressive than regular languages

Open:
e Decidability of word problem
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The Word Problem for CFLs

Outline of Part B

The Word Problem for CFLs
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The Word Problem for CFLs

The Word Problem

e Goal: given G= (N, X, P,S) and w € ¥*, decide whether w € L(G) or not
e For regular languages this was easy: just let the corresponding DFA run on w.
e But here: how to decide when to stop a derivation?

e Solution: establish normal form for grammars which guarantees that each nonterminal
produces at least one terminal symbol

—> only finitely many combinations to be inspected

RWTH

Thomas Noll
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The Word Problem for CFLs

Chomsky Normal Form |

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the
form
A—-BC o A—a
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The Word Problem for CFLs

Chomsky Normal Form |

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the
form
A—BC o A—a

Example B.9

Let S — ab | aSb be the grammar which generates L := {a"b" | n > 1}.
An equivalent grammar in Chomsky NF is

S— AB| AC  (generates L)

A— a (generates {a})

B—b (generates {b})

C — SB (generates {a"b"" | n > 1})

RWTH
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The Word Problem for CFLs

Chomsky Normal Form |l

Theorem B.10
Every CFL L (withe & L) is generatable by a CFG in Chomsky NF.
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The Word Problem for CFLs

Chomsky Normal Form |l

Theorem B.10
Every CFL L (withe & L) is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = (N, ¥, P, S) be some CFG which generates L. The
transformation of P into rules of the form A — BC and A — a proceeds in three
steps:
1. terminal symbols only in rules of the form A — a

(thus all other rules have the shape A — Ay ... A))

2. elimination of “chain rules” of the form A — B
3. elimination of rules of the form A — A,... A, where n > 2

(details omitted)

]

RWTH
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16 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B O
b-it Bonn, 16-20 March 2015

Software Modeling
Il and Verification Chair



The Word Problem for CFLs

The Word Problem Revisited

Goal: givenw € X" and G = (N, X, P, S) such that ¢ ¢ L(G), decide if w € L(G)
or not

(If w = ¢, then w € L(G) easily decidable for arbitrary G)

Approach by Cocke, Younger, Kasami (CYK algorithm):

1. transform G into Chomsky NF

2. letw=ay...a,(n>1)

3. letw|i,j]:=a;...gforevery1 <i<j<n

4. consider segments wli, j] in order of increasing length, starting with w(i, i] (i.e., single
letters)

. in each case, determine N;; :={Ae N | A="wli,j|}

6. test whether S € Ny , (and thus, whether S =* w1, n| = w)

6))

RWTH

Thomas Noll
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The Word Problem for CFLs

The CYK Algorithm |
Algorithm B.11 (CYK Algorithm)

Input: G = (N, X, P, S) in Chomsky NE w = a;...a, € £+
Question: w € L(G)?
Procedure: for i :=1to ndo
N,-7,-::{A€N|A—>a,-EP}
next /
ford:=1ton—1do % compute N;; 4
fori:=1ton—ddo
Ji =i+ d;N;j:= 0:
fork:=itoj—1do
Nij:=N;jU{A€ N | thereisA— BC € P
with B € N,',k, C e Nk—H,j}
next k
next /

next d
Output: “yes”if S € Ny ,, otherwise “no”
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The Word Problem for CFLs

The CYK Algorithm Il
Example B.12

»G: S~ SA|a
A— BS
B—BB|BS|b|c

* w = abaaba

» Matrix representation of N;;

(on the board)
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The Word Problem for CFLs

The Word Problem for Context-Free Languages

Seen:
e Word problem decidable using CYK algorithm
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The Word Problem for CFLs

The Word Problem for Context-Free Languages

Seen:
e Word problem decidable using CYK algorithm

Open:
e Emptiness problem
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The Emptiness Problem for CFLs

Outline of Part B

The Emptiness Problem for CFLs
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The Emptiness Problem for CFLs

The Emptiness Problem

e Goal: given G = (N, ¥, P, S), decide whether L(G) = () or not
e For regular languages this was easy: check in the corresponding DFA whether some final
state is reachable from the initial state.

e Here: test whether start symbol is productive, i.e., whether it generates a terminal word
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The Emptiness Problem for CFLs

The Emptiness Test
Algorithm B.13 (Emptiness Test)

Input: G = (N, X, P, S)
Question: L(G) = 0?
Procedure: mark every a € X as productive;
repeat
if there is A — « € P such that
all symbols in o productive then
mark A as productive;

end;

until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”
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The Emptiness Problem for CFLs

The Emptiness Test
Algorithm B.13 (Emptiness Test)

Input: G = (N, X, P, S)
Question: L(G) = 0?
Procedure: mark every a € X as productive;
repeat
if there is A — « € P such that
all symbols in o productive then
mark A as productive;
end;
until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example B.14
G: S— AB|CA
A— a
B— BC | AB
C—aB|b
(on the board)
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The Emptiness Problem for CFLs

The Emptiness Problem for CFLs

Seen:
e Emptiness problem decidable based on productivity of symbols

24 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair




The Emptiness Problem for CFLs

The Emptiness Problem for CFLs

Seen:
e Emptiness problem decidable based on productivity of symbols

Open:
e Closure properties of CFLs
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Closure Properties of CFLs

Outline of Part B

Closure Properties of CFLs
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Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.
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Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2let G, = (N, X, P;, S;) with L; := L(G;) and N; N N, = (). Then
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Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

Fori=1,2,let G = (N, X, P;, S;) with L; := L(G;) and Ny N N, = (). Then
e G:=(N,X,P,S)with N:={S}UN;UN>and P:={S — $;S.} U P; U P, generates
Ly - Lp;
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Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1,2, let G,' = <N,’7 Z, :D,'7 S,> with L; := L(G,) and Ny N N, = @ Then
e G:=(N,X,P,S)with N:={S}UN;UN>and P:={S — $;S.} U P; U P, generates
Ly - Lp;

e G:=(N,L,P,S)with N:={S}UN;UN>and P:={S — S; | So} U P; U P> generates
L1 U L2; and
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Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1,2, let G,' = <N,’7 Z, :D,'7 S,> with L; := L(G,) and Ny N N, = @ Then
e G:=(N,X,P,S)with N:={S}UN;UN>and P:={S — $;S.} U P; U P, generates
Ly - Lp;

e G:=(N,L,P,S)with N:={S}UN;UN>and P:={S — S; | So} U P; U P> generates
L1 U L2; and

e G:=(N,X,P,S)with N:={S}UN;and P:={S — ¢ | $;S} U P; generates L.

RWTH
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Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.
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Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.

e Both Ly := {&bc’ | k,I € N} and L, := {a"bc’ | k, | € N} are CFLs, but not
Ly N Ly ={a"b"c" | n € N} (without proof).
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Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.
e Both Ly := {&bc’ | k,I € N} and L, := {a"bc’ | k, | € N} are CFLs, but not
Ly N Ly ={a"b"c" | n € N} (without proof).
e If CFLs were closed under complement, then also under intersection (as Ly N L, = L1 U Ly).

[]

RWTH
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Closure Properties of CFLs

Overview of Decidability and Closure Results

Decidability Results
Class we L L= Ly = L,
Reg | +(A38) +(A40) +(A42)
CFL | +(B.11) +(B.13) -
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Closure Properties of CFLs

Overview of Decidability and Closure Results

Decidability Results
Class we L L= Ly = L,
Reg +(A.38) +(A40) +(A.42)
CFL | +(B.11) +(B.13) —

Closure Results
Class Ly Lo Li UL Ly N L L L*
Reg +(A.28) +(A.18) +(A.16) +(A.14) +(A.29)
CFL +(B.15) +(B.15) —-(B.16) —-(B.16) + (B.15)
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Outlook

Outline of Part B

Outlook
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Outlook

Outlook

e Pushdown automata (PDA)

e Equivalence problem for CFG and PDA (“L(X;) = L(X2)?") (generally undecidable,
decidable for DPDA)

e Pumping Lemma for CFL
e Greibach Normal Form for CFG
e Construction of parsers for compilers

e Non-context-free grammars and languages (context-sensitive and recursively enumerable
languages, Turing machines—see Week 3)

RWTH
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