Foundations of Informatics: a Bridging Course

Week 4: Formal Languages and Semantics
Part B: Context-Free Languages
b-it Bonn, 16-20 March 2015

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1415/foi/

’ Software Modeling

‘ Il and Verification Chair

http://moves.rwth-aachen.de/teaching/ws-1415/foi/

Context-Free Grammars and Languages

Outline of Part B

Context-Free Grammars and Languages

2 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Context-Free Grammars and Languages

Introductory Example |
Example B.1

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

(Expression)

Expression) x (Expression)

=0
;
(Expression) + (Expression)
<
((Expression))

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u x v, or (u) where u, v
are again expressions

Thomas Noll

3 0f 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 ‘

RWTH

Software Modeling
Il and Verification Chair

Context-Free Grammars and Languages

Introductory Exampile Il

Example B.2 (continued)

Here we abbreviate (Expression) as E, and use “—” instead of “::=".
Thus:

E—O0|1|E+E|ExE]|(E)

4 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Context-Free Grammars and Languages

Introductory Exampile Il

Example B.2 (continued)
Here we abbreviate (Expression) as E, and use “—” instead of “::=".
Thus:
E —O0|1|E+E|ExE|(E)
Now expressions can be generated by applying rules to the start symbol E:

E = ExE
= (E)x E

=
—
=
—

RWTH

Thomas Noll

4 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 Software Modeling

Il and Verification Chair

Context-Free Grammars and Languages

Context-Free Grammars |

Definition B.3
A context-free grammar (CFQG) is a quadruple

G=(N,L,P,S)

where
e N is a finite set of nonterminal symbols
e 2 is the (finite) alphabet of terminal symbols (disjoint from N)
e Pis a finite set of production rules of the form A — awhere A€ Nand a € (NU X)*
e S € Nis a start symbol

5 0of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘

RWTH

Software Modeling
Il and Verification Chair

Context-Free Grammars and Languages

Context-Free Grammars Il

Example B.4

For the above example, we have:

o N={E}

QZ:{O,‘I,—I—,*,(,)}
oeP={E—-0,E—-1E—-E+EE—ExEE—(E)}

e S=E
6 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Context-Free Grammars and Languages

Context-Free Grammars Il

Example B.4

For the above example, we have:

o N={E}

QZ:{O,‘I,—I—,*,(,)}
oeP={E—-0,E—-1E—-E+EE—ExEE—(E)}
e S=E

Naming conventions:
e nonterminals start with uppercase letters
e terminals start with lowercase letters
e start symbol = symbol on LHS of first production
—> grammar completely defined by productions

RWTH

Thomas Noll

6 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 ‘

Software Modeling
Il and Verification Chair

Context-Free Grammars and Languages

Context-Free Languages |

Definition B.5
Let G= (N,X, P,S) be a CFG.
e A sentence v € (N U X)* is directly derivable from 5 € (N U ¥)* if there exist

T=A— a € Pandéy,d € (NUX)* such that 5 = §;Ad, and v = d1ad, (notation: 5 = v
orjust 8 = 7).

e A derivation (of length n) of v from 3 is a sequence of direct derivations of the form
do = 01 = ... = d0pWhere 6g = 3, 0, = 7, and 6,_1 = ¢, for every 1 < i < n (notation:
B =)

e Aword w € X" is called derivable in Gif S =* w.

RWTH

Thomas Noll

7 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 ‘

Software Modeling
Il and Verification Chair

Context-Free Grammars and Languages

Context-Free Languages |

Definition B.5
Let G= (N,X, P,S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— a € Pandéy,d € (NUX)* such that 5 = §;Ad, and v = d1ad, (notation: 5 = v
orjust 8 = 7).

e A derivation (of length n) of v from 3 is a sequence of direct derivations of the form
do = 01 = ... = d0pWhere 6g = 3, 0, = 7, and 6,_1 = ¢, for every 1 < i < n (notation:
B =)

e Aword w € ¥" is called derivable in G if S =" w.

e The language generated by Gis L(G) :={w € ¥* | S =* w}.

e Alanguage L C X" is called context-free (CFL) if it is generated by some CFG.

e Two grammars Gy, G, are equivalent if L(G;) = L(Go).

RWTH

Thomas Noll

7 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 ‘

Software Modeling
Il and Verification Chair

Context-Free Grammars and Languages

Context-Free Languages Il

Example B.6

The language {a"b"” | n > 1} is context-free. It is generated by the grammar
G=(N,%, P,S) with

o N={S}

oY ={a,b}

o P={S — aSb | ab}
(proof: on the board)

RWTH

Thomas Noll

8 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015

Software Modeling
Il and Verification Chair

Context-Free Grammars and Languages

Context-Free Languages i

Example B.6

The language {a"b"” | n > 1} is context-free. It is generated by the grammar
G=(N,%, P,S) with

o N={S}

oY ={a,b}

o P={S — aSb | ab}
(proof: on the board)

Remark: illustration of derivations by derivation trees
e root labelled by start symbol
e leafs labelled by terminal symbols
e successors of node labelled according to right-hand side of production rule

(example on the board)

RWTH

Thomas Noll

8 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 ‘

Software Modeling
Il and Verification Chair

Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:
e Context-free grammars
e Derivations
e Context-free languages

9 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

n

4

Software Modeling
Il and Verification Chair

RWTH

Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:
e Context-free grammars
e Derivations
e Context-free languages

Open:
e Relation between context-free and regular languages

9 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Context-Free vs. Regular Languages

Outline of Part B

Context-Free vs. Regular Languages

10 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

.

4

Software Modeling
Il and Verification Chair

RWTH

Context-Free vs. Regular Languages

Context-Free vs. Regular Languages

Theorem B.7

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the class of
CFLs.)

11 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll

b-it Bonn, 16-20 March 2015 ‘

RWTH

Software Modeling
Il and Verification Chair

Context-Free vs. Regular Languages

Context-Free vs. Regular Languages

Theorem B.7

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the class of
CFLs.)

Proof.

1. Let L be a regular language, and let 2l = (Q, ¥, 6, qo, F) be a DFA which recognises L.
G := (N,X, P, S) is defined as follows:
-N:=Q,S:= q
—ifd(g,a) = ¢, theng — aqg € P
—-ifge F,theng — ¢ € P
Obviously a w-labelled run in 2 from qg to F corresponds to a derivation of w in G, and vice
versa. Thus L(2l) = L(G)
(example on the board).

2. An example is {@"b" | n > 1} (see Ex. B.6). O]
11 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll o Rm
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Context-Free vs. Regular Languages

Context-Free Grammars and Languages

Seen:
e CFLs are more expressive than regular languages

12 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Context-Free vs. Regular Languages

Context-Free Grammars and Languages

Seen:
e CFLs are more expressive than regular languages

Open:
e Decidability of word problem

12 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

n

4

Software Modeling
Il and Verification Chair

RWTH

The Word Problem for CFLs

Outline of Part B

The Word Problem for CFLs

13 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

.

4

Software Modeling
Il and Verification Chair

RWTH

The Word Problem for CFLs

The Word Problem

e Goal: given G= (N, X, P,S) and w € ¥*, decide whether w € L(G) or not
e For regular languages this was easy: just let the corresponding DFA run on w.
e But here: how to decide when to stop a derivation?

e Solution: establish normal form for grammars which guarantees that each nonterminal
produces at least one terminal symbol

—> only finitely many combinations to be inspected

RWTH

Thomas Noll

14 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 ‘

Software Modeling
Il and Verification Chair

The Word Problem for CFLs

Chomsky Normal Form |

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the
form
A—-BC o A—a

15 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

The Word Problem for CFLs

Chomsky Normal Form |

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the
form
A—BC o A—a

Example B.9

Let S — ab | aSb be the grammar which generates L := {a"b" | n > 1}.
An equivalent grammar in Chomsky NF is

S— AB| AC (generates L)

A— a (generates {a})

B—b (generates {b})

C — SB (generates {a"b"" | n > 1})

RWTH

Thomas Noll

15 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 Software Modeling

Il and Verification Chair

The Word Problem for CFLs

Chomsky Normal Form |l

Theorem B.10
Every CFL L (withe & L) is generatable by a CFG in Chomsky NF.

16 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

The Word Problem for CFLs

Chomsky Normal Form |l

Theorem B.10
Every CFL L (withe & L) is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = (N, ¥, P, S) be some CFG which generates L. The
transformation of P into rules of the form A — BC and A — a proceeds in three
steps:
1. terminal symbols only in rules of the form A — a

(thus all other rules have the shape A — Ay ... A))

2. elimination of “chain rules” of the form A — B
3. elimination of rules of the form A — A,... A, where n > 2

(details omitted)

]

RWTH

Thomas Noll

16 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B O
b-it Bonn, 16-20 March 2015

Software Modeling
Il and Verification Chair

The Word Problem for CFLs

The Word Problem Revisited

Goal: givenw € X" and G = (N, X, P, S) such that ¢ ¢ L(G), decide if w € L(G)
or not

(If w = ¢, then w € L(G) easily decidable for arbitrary G)

Approach by Cocke, Younger, Kasami (CYK algorithm):

1. transform G into Chomsky NF

2. letw=ay...a,(n>1)

3. letw|i,j]:=a;...gforevery1 <i<j<n

4. consider segments wli, j] in order of increasing length, starting with w(i, i] (i.e., single
letters)

. in each case, determine N;; :={Ae N | A="wli,j|}

6. test whether S € Ny , (and thus, whether S =* w1, n| = w)

6))

RWTH

Thomas Noll

17 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 ‘

Software Modeling
Il and Verification Chair

The Word Problem for CFLs

The CYK Algorithm |
Algorithm B.11 (CYK Algorithm)

Input: G = (N, X, P, S) in Chomsky NE w = a;...a, € £+
Question: w € L(G)?
Procedure: for i :=1to ndo
N,-7,-::{A€N|A—>a,-EP}
next /
ford:=1ton—1do % compute N;; 4
fori:=1ton—ddo
Ji =i+ d;N;j:= 0:
fork:=itoj—1do
Nij:=N;jU{A€ N | thereisA— BC € P
with B € N,',k, C e Nk—H,j}
next k
next /

next d
Output: “yes”if S € Ny ,, otherwise “no”

18 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

RWTH

The Word Problem for CFLs

The CYK Algorithm Il
Example B.12

»G: S~ SA|a
A— BS
B—BB|BS|b|c

* w = abaaba

» Matrix representation of N;;

(on the board)

19 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

The Word Problem for CFLs

The Word Problem for Context-Free Languages

Seen:
e Word problem decidable using CYK algorithm

20 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

The Word Problem for CFLs

The Word Problem for Context-Free Languages

Seen:
e Word problem decidable using CYK algorithm

Open:
e Emptiness problem

20 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

The Emptiness Problem for CFLs

Outline of Part B

The Emptiness Problem for CFLs

21 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

.

4

Software Modeling
Il and Verification Chair

RWTH

The Emptiness Problem for CFLs

The Emptiness Problem

e Goal: given G = (N, ¥, P, S), decide whether L(G) = () or not
e For regular languages this was easy: check in the corresponding DFA whether some final
state is reachable from the initial state.

e Here: test whether start symbol is productive, i.e., whether it generates a terminal word

22 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

The Emptiness Problem for CFLs

The Emptiness Test
Algorithm B.13 (Emptiness Test)

Input: G = (N, X, P, S)
Question: L(G) = 0?
Procedure: mark every a € X as productive;
repeat
if there is A — « € P such that
all symbols in o productive then
mark A as productive;

end;

until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

23 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

The Emptiness Problem for CFLs

The Emptiness Test
Algorithm B.13 (Emptiness Test)

Input: G = (N, X, P, S)
Question: L(G) = 0?
Procedure: mark every a € X as productive;
repeat
if there is A — « € P such that
all symbols in o productive then
mark A as productive;
end;
until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example B.14
G: S— AB|CA
A— a
B— BC | AB
C—aB|b
(on the board)
23 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B

Thomas Noll
b-it Bonn, 16-20 March 2015

n

4

Software Modeling
Il and Verification Chair

RWTH

The Emptiness Problem for CFLs

The Emptiness Problem for CFLs

Seen:
e Emptiness problem decidable based on productivity of symbols

24 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

The Emptiness Problem for CFLs

The Emptiness Problem for CFLs

Seen:
e Emptiness problem decidable based on productivity of symbols

Open:
e Closure properties of CFLs

24 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Closure Properties of CFLs

Outline of Part B

Closure Properties of CFLs

25 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

.

4

Software Modeling
Il and Verification Chair

RWTH

Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

26 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2let G, = (N, X, P;, S;) with L; := L(G;) and N; N N, = (). Then

26 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

Fori=1,2,let G = (N, X, P;, S;) with L; := L(G;) and Ny N N, = (). Then
e G:=(N,X,P,S)with N:={S}UN;UN>and P:={S — $;S.} U P; U P, generates
Ly - Lp;

26 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1,2, let G,' = <N,’7 Z, :D,'7 S,> with L; := L(G,) and Ny N N, = @ Then
e G:=(N,X,P,S)with N:={S}UN;UN>and P:={S — $;S.} U P; U P, generates
Ly - Lp;

e G:=(N,L,P,S)with N:={S}UN;UN>and P:={S — S; | So} U P; U P> generates
L1 U L2; and

26 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 Software Modeling
Il and Verification Chair

Closure Properties of CFLs

Positive Resulis

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1,2, let G,' = <N,’7 Z, :D,'7 S,> with L; := L(G,) and Ny N N, = @ Then
e G:=(N,X,P,S)with N:={S}UN;UN>and P:={S — $;S.} U P; U P, generates
Ly - Lp;

e G:=(N,L,P,S)with N:={S}UN;UN>and P:={S — S; | So} U P; U P> generates
L1 U L2; and

e G:=(N,X,P,S)with N:={S}UN;and P:={S — ¢ | $;S} U P; generates L.

RWTH

Thomas Noll

26 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015

Software Modeling
Il and Verification Chair

Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

27 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.

e Both Ly := {&bc’ | k,I € N} and L, := {a"bc’ | k, | € N} are CFLs, but not
Ly N Ly ={a"b"c" | n € N} (without proof).

27 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Rm
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.
e Both Ly := {&bc’ | k,I € N} and L, := {a"bc’ | k, | € N} are CFLs, but not
Ly N Ly ={a"b"c" | n € N} (without proof).
e If CFLs were closed under complement, then also under intersection (as Ly N L, = L1 U Ly).

[]

RWTH

Thomas Noll

27 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 ‘

Software Modeling
Il and Verification Chair

Closure Properties of CFLs

Overview of Decidability and Closure Results

Decidability Results
Class we L L= Ly = L,
Reg | +(A38) +(A40) +(A42)
CFL | +(B.11) +(B.13) -
28 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
L S ..., |KWH

Il and Verification Chair

Closure Properties of CFLs

Overview of Decidability and Closure Results

Decidability Results
Class we L L= Ly = L,
Reg +(A.38) +(A40) +(A.42)
CFL | +(B.11) +(B.13) —

Closure Results
Class Ly Lo Li UL Ly N L L L*
Reg +(A.28) +(A.18) +(A.16) +(A.14) +(A.29)
CFL +(B.15) +(B.15) —-(B.16) —-(B.16) + (B.15)

RWTH

Thomas Noll

28 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 Software Modeling

Il and Verification Chair

Outlook

Outline of Part B

Outlook

29 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015 ‘ Software Modeling
Il and Verification Chair

Outlook

Outlook

e Pushdown automata (PDA)

e Equivalence problem for CFG and PDA (“L(X;) = L(X2)?") (generally undecidable,
decidable for DPDA)

e Pumping Lemma for CFL
e Greibach Normal Form for CFG
e Construction of parsers for compilers

e Non-context-free grammars and languages (context-sensitive and recursively enumerable
languages, Turing machines—see Week 3)

RWTH

Thomas Noll

30 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B o
b-it Bonn, 16-20 March 2015 ‘

Software Modeling
Il and Verification Chair

	Context-Free Languages
	Context-Free Grammars and Languages
	Context-Free vs. Regular Languages
	The Word Problem for CFLs
	The Emptiness Problem for CFLs
	Closure Properties of CFLs
	Outlook

