
Foundations of Informatics: a Bridging Course

Week 4: Formal Languages and Semantics
Part B: Context-Free Languages
b-it Bonn, 16-20 March 2015

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1415/foi/
b-it Bonn, 16-20 March 2015

http://moves.rwth-aachen.de/teaching/ws-1415/foi/

Context-Free Grammars and Languages

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

2 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Introductory Example I

Example B.1

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

〈Expression〉 ::= 0
| 1
| 〈Expression〉 + 〈Expression〉
| 〈Expression〉 ∗ 〈Expression〉
| (〈Expression〉)

Meaning:
An expression is either 0 or 1, or it is of the form u + v, u ∗ v, or (u) where u, v
are again expressions

3 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Introductory Example II

Example B.2 (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”.

Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by applying rules to the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

4 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Introductory Example II

Example B.2 (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”.

Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by applying rules to the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

4 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Context-Free Grammars I

Definition B.3

A context-free grammar (CFG) is a quadruple

G = 〈N,Σ,P,S〉
where
• N is a finite set of nonterminal symbols
• Σ is the (finite) alphabet of terminal symbols (disjoint from N)
• P is a finite set of production rules of the form A→ α where A ∈ N and α ∈ (N ∪ Σ)∗

• S ∈ N is a start symbol

5 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Context-Free Grammars II

Example B.4

For the above example, we have:
• N = {E}
• Σ = {0, 1,+, ∗, (,)}
• P = {E → 0,E → 1,E → E + E ,E → E ∗ E ,E → (E)}
• S = E

Naming conventions:
• nonterminals start with uppercase letters
• terminals start with lowercase letters
• start symbol = symbol on LHS of first production

=⇒ grammar completely defined by productions

6 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Context-Free Grammars II

Example B.4

For the above example, we have:
• N = {E}
• Σ = {0, 1,+, ∗, (,)}
• P = {E → 0,E → 1,E → E + E ,E → E ∗ E ,E → (E)}
• S = E

Naming conventions:
• nonterminals start with uppercase letters
• terminals start with lowercase letters
• start symbol = symbol on LHS of first production

=⇒ grammar completely defined by productions

6 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Context-Free Languages I

Definition B.5

Let G = 〈N,Σ,P,S〉 be a CFG.
• A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if there exist
π = A→ α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that β = δ1Aδ2 and γ = δ1αδ2 (notation: β π⇒ γ

or just β ⇒ γ) .
• A derivation (of length n) of γ from β is a sequence of direct derivations of the form
δ0 ⇒ δ1 ⇒ . . .⇒ δn where δ0 = β, δn = γ, and δi−1 ⇒ δi for every 1 ≤ i ≤ n (notation:
β ⇒∗ γ).
• A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w .

• The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
• A language L ⊆ Σ∗ is called context-free (CFL) if it is generated by some CFG.
• Two grammars G1,G2 are equivalent if L(G1) = L(G2).

7 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Context-Free Languages I

Definition B.5

Let G = 〈N,Σ,P,S〉 be a CFG.
• A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if there exist
π = A→ α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that β = δ1Aδ2 and γ = δ1αδ2 (notation: β π⇒ γ

or just β ⇒ γ) .
• A derivation (of length n) of γ from β is a sequence of direct derivations of the form
δ0 ⇒ δ1 ⇒ . . .⇒ δn where δ0 = β, δn = γ, and δi−1 ⇒ δi for every 1 ≤ i ≤ n (notation:
β ⇒∗ γ).
• A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w .
• The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
• A language L ⊆ Σ∗ is called context-free (CFL) if it is generated by some CFG.
• Two grammars G1,G2 are equivalent if L(G1) = L(G2).

7 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Context-Free Languages II

Example B.6

The language {anbn | n ≥ 1} is context-free. It is generated by the grammar
G = 〈N,Σ,P,S〉 with
• N = {S}
• Σ = {a, b}
• P = {S → aSb | ab}

(proof: on the board)

Remark: illustration of derivations by derivation trees
• root labelled by start symbol
• leafs labelled by terminal symbols
• successors of node labelled according to right-hand side of production rule

(example on the board)

8 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Context-Free Languages II

Example B.6

The language {anbn | n ≥ 1} is context-free. It is generated by the grammar
G = 〈N,Σ,P,S〉 with
• N = {S}
• Σ = {a, b}
• P = {S → aSb | ab}

(proof: on the board)

Remark: illustration of derivations by derivation trees
• root labelled by start symbol
• leafs labelled by terminal symbols
• successors of node labelled according to right-hand side of production rule

(example on the board)

8 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:
• Context-free grammars
• Derivations
• Context-free languages

Open:
• Relation between context-free and regular languages

9 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:
• Context-free grammars
• Derivations
• Context-free languages

Open:
• Relation between context-free and regular languages

9 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free vs. Regular Languages

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

10 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free vs. Regular Languages

Context-Free vs. Regular Languages

Theorem B.7

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the class of
CFLs.)

Proof.

1. Let L be a regular language, and let A = 〈Q,Σ, δ, q0,F 〉 be a DFA which recognises L.
G := 〈N,Σ,P,S〉 is defined as follows:
– N := Q, S := q0

– if δ(q, a) = q′, then q → aq′ ∈ P
– if q ∈ F , then q → ε ∈ P

Obviously a w-labelled run in A from q0 to F corresponds to a derivation of w in G, and vice
versa. Thus L(A) = L(G)
(example on the board).

2. An example is {anbn | n ≥ 1} (see Ex. B.6).

11 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free vs. Regular Languages

Context-Free vs. Regular Languages

Theorem B.7

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the class of
CFLs.)

Proof.

1. Let L be a regular language, and let A = 〈Q,Σ, δ, q0,F 〉 be a DFA which recognises L.
G := 〈N,Σ,P,S〉 is defined as follows:
– N := Q, S := q0

– if δ(q, a) = q′, then q → aq′ ∈ P
– if q ∈ F , then q → ε ∈ P

Obviously a w-labelled run in A from q0 to F corresponds to a derivation of w in G, and vice
versa. Thus L(A) = L(G)
(example on the board).

2. An example is {anbn | n ≥ 1} (see Ex. B.6).

11 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free vs. Regular Languages

Context-Free Grammars and Languages

Seen:
• CFLs are more expressive than regular languages

Open:
• Decidability of word problem

12 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Context-Free vs. Regular Languages

Context-Free Grammars and Languages

Seen:
• CFLs are more expressive than regular languages

Open:
• Decidability of word problem

12 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Word Problem for CFLs

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

13 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Word Problem for CFLs

The Word Problem

• Goal: given G = 〈N,Σ,P,S〉 and w ∈ Σ∗, decide whether w ∈ L(G) or not
• For regular languages this was easy: just let the corresponding DFA run on w .
• But here: how to decide when to stop a derivation?
• Solution: establish normal form for grammars which guarantees that each nonterminal

produces at least one terminal symbol
=⇒ only finitely many combinations to be inspected

14 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Word Problem for CFLs

Chomsky Normal Form I

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the
form

A→ BC or A→ a

Example B.9

Let S → ab | aSb be the grammar which generates L := {anbn | n ≥ 1}.
An equivalent grammar in Chomsky NF is

S→ AB | AC (generates L)
A→ a (generates {a})
B→ b (generates {b})
C→ SB (generates {anbn+1 | n ≥ 1})

15 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Word Problem for CFLs

Chomsky Normal Form I

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the
form

A→ BC or A→ a

Example B.9

Let S → ab | aSb be the grammar which generates L := {anbn | n ≥ 1}.
An equivalent grammar in Chomsky NF is

S→ AB | AC (generates L)
A→ a (generates {a})
B→ b (generates {b})
C→ SB (generates {anbn+1 | n ≥ 1})

15 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Word Problem for CFLs

Chomsky Normal Form II

Theorem B.10

Every CFL L (with ε /∈ L) is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = 〈N,Σ,P,S〉 be some CFG which generates L. The
transformation of P into rules of the form A→ BC and A→ a proceeds in three
steps:
1. terminal symbols only in rules of the form A→ a

(thus all other rules have the shape A→ A1 . . .An)
2. elimination of “chain rules” of the form A→ B
3. elimination of rules of the form A→ A1 . . .An where n > 2

(details omitted)

16 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Word Problem for CFLs

Chomsky Normal Form II

Theorem B.10

Every CFL L (with ε /∈ L) is generatable by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = 〈N,Σ,P,S〉 be some CFG which generates L. The
transformation of P into rules of the form A→ BC and A→ a proceeds in three
steps:
1. terminal symbols only in rules of the form A→ a

(thus all other rules have the shape A→ A1 . . .An)
2. elimination of “chain rules” of the form A→ B
3. elimination of rules of the form A→ A1 . . .An where n > 2

(details omitted)

16 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Word Problem for CFLs

The Word Problem Revisited

Goal: given w ∈ Σ+ and G = 〈N,Σ,P,S〉 such that ε /∈ L(G), decide if w ∈ L(G)
or not

(If w = ε, then w ∈ L(G) easily decidable for arbitrary G)

Approach by Cocke, Younger, Kasami (CYK algorithm):
1. transform G into Chomsky NF
2. let w = a1 . . . an (n ≥ 1)
3. let w [i, j] := ai . . . aj for every 1 ≤ i ≤ j ≤ n
4. consider segments w [i, j] in order of increasing length, starting with w [i, i] (i.e., single

letters)
5. in each case, determine Ni,j := {A ∈ N | A⇒∗ w [i, j]}
6. test whether S ∈ N1,n (and thus, whether S ⇒∗ w [1, n] = w)

17 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Word Problem for CFLs

The CYK Algorithm I

Algorithm B.11 (CYK Algorithm)

Input: G = 〈N,Σ,P,S〉 in Chomsky NF, w = a1 . . . an ∈ Σ+

Question: w ∈ L(G)?
Procedure: for i := 1 to n do

Ni,i := {A ∈ N | A→ ai ∈ P}
next i
for d := 1 to n − 1 do % compute Ni,i+d

for i := 1 to n − d do
j := i + d ; Ni,j := ∅;
for k := i to j − 1 do

Ni,j := Ni,j ∪ {A ∈ N | there is A→ BC ∈ P
with B ∈ Ni,k ,C ∈ Nk+1,j}

next k
next i

next d
Output: “yes” if S ∈ N1,n, otherwise “no”

18 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Word Problem for CFLs

The CYK Algorithm II

Example B.12

• G : S → SA | a
A→ BS
B → BB | BS | b | c

• w = abaaba
• Matrix representation of Ni,j

(on the board)

19 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Word Problem for CFLs

The Word Problem for Context-Free Languages

Seen:
• Word problem decidable using CYK algorithm

Open:
• Emptiness problem

20 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Word Problem for CFLs

The Word Problem for Context-Free Languages

Seen:
• Word problem decidable using CYK algorithm

Open:
• Emptiness problem

20 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Emptiness Problem for CFLs

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

21 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Emptiness Problem for CFLs

The Emptiness Problem

• Goal: given G = 〈N,Σ,P,S〉, decide whether L(G) = ∅ or not
• For regular languages this was easy: check in the corresponding DFA whether some final

state is reachable from the initial state.
• Here: test whether start symbol is productive, i.e., whether it generates a terminal word

22 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Emptiness Problem for CFLs

The Emptiness Test

Algorithm B.13 (Emptiness Test)

Input: G = 〈N,Σ,P,S〉
Question: L(G) = ∅?
Procedure: mark every a ∈ Σ as productive;

repeat
if there is A→ α ∈ P such that

all symbols in α productive then
mark A as productive;

end;
until no further productive symbols found;

Output: “no” if S productive, otherwise “yes”

Example B.14

G : S→ AB | CA
A→ a
B→ BC | AB
C→ aB | b

(on the board)

23 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Emptiness Problem for CFLs

The Emptiness Test

Algorithm B.13 (Emptiness Test)

Input: G = 〈N,Σ,P,S〉
Question: L(G) = ∅?
Procedure: mark every a ∈ Σ as productive;

repeat
if there is A→ α ∈ P such that

all symbols in α productive then
mark A as productive;

end;
until no further productive symbols found;

Output: “no” if S productive, otherwise “yes”

Example B.14

G : S→ AB | CA
A→ a
B→ BC | AB
C→ aB | b

(on the board)

23 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Emptiness Problem for CFLs

The Emptiness Problem for CFLs

Seen:
• Emptiness problem decidable based on productivity of symbols

Open:
• Closure properties of CFLs

24 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

The Emptiness Problem for CFLs

The Emptiness Problem for CFLs

Seen:
• Emptiness problem decidable based on productivity of symbols

Open:
• Closure properties of CFLs

24 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Closure Properties of CFLs

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

25 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Closure Properties of CFLs

Positive Results

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let Gi = 〈Ni,Σ,Pi,Si〉 with Li := L(Gi) and N1 ∩ N2 = ∅. Then
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1S2} ∪ P1 ∪ P2 generates

L1 · L2;
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1 | S2} ∪ P1 ∪ P2 generates

L1 ∪ L2; and
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 and P := {S → ε | S1S} ∪ P1 generates L∗1.

26 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Closure Properties of CFLs

Positive Results

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let Gi = 〈Ni,Σ,Pi,Si〉 with Li := L(Gi) and N1 ∩ N2 = ∅. Then

• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1S2} ∪ P1 ∪ P2 generates
L1 · L2;
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1 | S2} ∪ P1 ∪ P2 generates

L1 ∪ L2; and
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 and P := {S → ε | S1S} ∪ P1 generates L∗1.

26 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Closure Properties of CFLs

Positive Results

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let Gi = 〈Ni,Σ,Pi,Si〉 with Li := L(Gi) and N1 ∩ N2 = ∅. Then
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1S2} ∪ P1 ∪ P2 generates

L1 · L2;

• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1 | S2} ∪ P1 ∪ P2 generates
L1 ∪ L2; and
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 and P := {S → ε | S1S} ∪ P1 generates L∗1.

26 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Closure Properties of CFLs

Positive Results

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let Gi = 〈Ni,Σ,Pi,Si〉 with Li := L(Gi) and N1 ∩ N2 = ∅. Then
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1S2} ∪ P1 ∪ P2 generates

L1 · L2;
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1 | S2} ∪ P1 ∪ P2 generates

L1 ∪ L2; and

• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 and P := {S → ε | S1S} ∪ P1 generates L∗1.

26 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Closure Properties of CFLs

Positive Results

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let Gi = 〈Ni,Σ,Pi,Si〉 with Li := L(Gi) and N1 ∩ N2 = ∅. Then
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1S2} ∪ P1 ∪ P2 generates

L1 · L2;
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1 | S2} ∪ P1 ∪ P2 generates

L1 ∪ L2; and
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 and P := {S → ε | S1S} ∪ P1 generates L∗1.

26 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.

• Both L1 := {akbkc l | k , l ∈ N} and L2 := {akblc l | k , l ∈ N} are CFLs, but not
L1 ∩ L2 = {anbncn | n ∈ N} (without proof).

• If CFLs were closed under complement, then also under intersection (as L1 ∩ L2 = L1 ∪ L2).

27 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.

• Both L1 := {akbkc l | k , l ∈ N} and L2 := {akblc l | k , l ∈ N} are CFLs, but not
L1 ∩ L2 = {anbncn | n ∈ N} (without proof).

• If CFLs were closed under complement, then also under intersection (as L1 ∩ L2 = L1 ∪ L2).

27 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Closure Properties of CFLs

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.

• Both L1 := {akbkc l | k , l ∈ N} and L2 := {akblc l | k , l ∈ N} are CFLs, but not
L1 ∩ L2 = {anbncn | n ∈ N} (without proof).

• If CFLs were closed under complement, then also under intersection (as L1 ∩ L2 = L1 ∪ L2).

27 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Closure Properties of CFLs

Overview of Decidability and Closure Results

Decidability Results
Class w ∈ L L = ∅ L1 = L2

Reg + (A.38) + (A.40) + (A.42)
CFL + (B.11) + (B.13) –

Closure Results
Class L1 · L2 L1 ∪ L2 L1 ∩ L2 L L∗

Reg + (A.28) + (A.18) + (A.16) + (A.14) + (A.29)
CFL + (B.15) + (B.15) – (B.16) – (B.16) + (B.15)

28 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Closure Properties of CFLs

Overview of Decidability and Closure Results

Decidability Results
Class w ∈ L L = ∅ L1 = L2

Reg + (A.38) + (A.40) + (A.42)
CFL + (B.11) + (B.13) –

Closure Results
Class L1 · L2 L1 ∪ L2 L1 ∩ L2 L L∗

Reg + (A.28) + (A.18) + (A.16) + (A.14) + (A.29)
CFL + (B.15) + (B.15) – (B.16) – (B.16) + (B.15)

28 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Outlook

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

29 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

Outlook

Outlook

• Pushdown automata (PDA)
• Equivalence problem for CFG and PDA (“L(X1) = L(X2)?”) (generally undecidable,

decidable for DPDA)
• Pumping Lemma for CFL
• Greibach Normal Form for CFG
• Construction of parsers for compilers
• Non-context-free grammars and languages (context-sensitive and recursively enumerable

languages, Turing machines—see Week 3)

30 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B
Thomas Noll
b-it Bonn, 16-20 March 2015

	Context-Free Languages
	Context-Free Grammars and Languages
	Context-Free vs. Regular Languages
	The Word Problem for CFLs
	The Emptiness Problem for CFLs
	Closure Properties of CFLs
	Outlook

