

Foundations of Informatics: a Bridging Course

Week 4: Formal Languages and Semantics Part B: Context-Free Languages b-it Bonn, 16-20 March 2015

Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1415/foi/

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

Introductory Example I

Example B.1

Syntax definition of programming languages by "Backus-Naur" rules Here: simple arithmetic expressions

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u * v, or (u) where u, v are again expressions

Introductory Example II

Example B.2 (continued)

```
Here we abbreviate \langle Expression \rangle as E, and use "\rightarrow" instead of "::=".
```

Thus:

```
E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)
```


Introductory Example II

Example B.2 (continued)

Here we abbreviate $\langle Expression \rangle$ as *E*, and use " \rightarrow " instead of "::=".

Thus:

4 of 30

$$E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$$

Now expressions can be generated by applying rules to the start symbol *E*:

$$egin{array}{rcl} E \ \Rightarrow \ E st E \ \Rightarrow \ (E) st E \ \Rightarrow \ (E) st 1 \ \Rightarrow \ (E+E) st 1 \ \Rightarrow \ (0+E) st 1 \ \Rightarrow \ (0+1) st 1 \end{array}$$

Context-Free Grammars and Languages

Context-Free Grammars I

Definition B.3

A context-free grammar (CFG) is a quadruple

$$G = \langle N, \Sigma, P, S \rangle$$

where

- *N* is a finite set of nonterminal symbols
- Σ is the (finite) alphabet of terminal symbols (disjoint from *N*)
- *P* is a finite set of production rules of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in (N \cup \Sigma)^*$
- $S \in N$ is a start symbol

Context-Free Grammars and Languages

Context-Free Grammars II

Example B.4

For the above example, we have:

- $N = \{E\}$
- $\Sigma = \{0, 1, +, *, (,)\}$
- $P = \{E \rightarrow 0, E \rightarrow 1, E \rightarrow E + E, E \rightarrow E * E, E \rightarrow (E)\}$
- *S* = *E*

Context-Free Grammars II

Example B.4

For the above example, we have:

- *N* = {*E*}
- $\Sigma = \{0, 1, +, *, (,)\}$
- $P = \{E \rightarrow 0, E \rightarrow 1, E \rightarrow E + E, E \rightarrow E * E, E \rightarrow (E)\}$
- *S* = *E*

Naming conventions:

- nonterminals start with uppercase letters
- terminals start with lowercase letters
- start symbol = symbol on LHS of first production
- grammar completely defined by productions

Context-Free Languages I

Definition B.5

7 of 30

Let $G = \langle N, \Sigma, P, S \rangle$ be a CFG.

• A sentence $\gamma \in (N \cup \Sigma)^*$ is directly derivable from $\beta \in (N \cup \Sigma)^*$ if there exist $\pi = A \rightarrow \alpha \in P$ and $\delta_1, \delta_2 \in (N \cup \Sigma)^*$ such that $\beta = \delta_1 A \delta_2$ and $\gamma = \delta_1 \alpha \delta_2$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$

or just $\beta \Rightarrow \gamma$).

- A derivation (of length *n*) of γ from β is a sequence of direct derivations of the form $\delta_0 \Rightarrow \delta_1 \Rightarrow \ldots \Rightarrow \delta_n$ where $\delta_0 = \beta$, $\delta_n = \gamma$, and $\delta_{i-1} \Rightarrow \delta_i$ for every $1 \le i \le n$ (notation: $\beta \Rightarrow^* \gamma$).
- A word $w \in \Sigma^*$ is called derivable in *G* if $S \Rightarrow^* w$.

Context-Free Languages I

Definition B.5

7 of 30

Let $G = \langle N, \Sigma, P, S \rangle$ be a CFG.

• A sentence $\gamma \in (N \cup \Sigma)^*$ is directly derivable from $\beta \in (N \cup \Sigma)^*$ if there exist $\pi = A \rightarrow \alpha \in P$ and $\delta_1, \delta_2 \in (N \cup \Sigma)^*$ such that $\beta = \delta_1 A \delta_2$ and $\gamma = \delta_1 \alpha \delta_2$ (notation: $\beta \stackrel{\pi}{\Rightarrow} \gamma$

or just $\beta \Rightarrow \gamma$).

- A derivation (of length *n*) of γ from β is a sequence of direct derivations of the form $\delta_0 \Rightarrow \delta_1 \Rightarrow \ldots \Rightarrow \delta_n$ where $\delta_0 = \beta$, $\delta_n = \gamma$, and $\delta_{i-1} \Rightarrow \delta_i$ for every $1 \le i \le n$ (notation: $\beta \Rightarrow^* \gamma$).
- A word $w \in \Sigma^*$ is called derivable in *G* if $S \Rightarrow^* w$.
- The language generated by *G* is $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$.
- A language $L \subseteq \Sigma^*$ is called context-free (CFL) if it is generated by some CFG.
- Two grammars G_1 , G_2 are equivalent if $L(G_1) = L(G_2)$.

Context-Free Languages II

Example B.6

The language $\{a^n b^n \mid n \ge 1\}$ is context-free. It is generated by the grammar $G = \langle N, \Sigma, P, S \rangle$ with • $N = \{S\}$ • $\Sigma = \{a, b\}$ • $P = \{S \rightarrow aSb \mid ab\}$ (proof: on the board)

Context-Free Languages II

Example B.6

The language $\{a^n b^n \mid n \ge 1\}$ is context-free. It is generated by the grammar $G = \langle N, \Sigma, P, S \rangle$ with • $N = \{S\}$ • $\Sigma = \{a, b\}$ • $P = \{S \rightarrow aSb \mid ab\}$ (proof: on the board)

Remark: illustration of derivations by derivation trees

- root labelled by start symbol
- leafs labelled by terminal symbols
- successors of node labelled according to right-hand side of production rule (example on the board)

Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Context-Free Grammars and Languages

Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Open:

• Relation between context-free and regular languages

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

Context-Free vs. Regular Languages

Theorem B.7

11 of 30

Thomas Noll

- 1. Every regular language is context-free.
- 2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the class of CFLs.)

Context-Free vs. Regular Languages

Theorem B.7

- 1. Every regular language is context-free.
- 2. There exist CFLs which are not regular.

(In other words: the class of regular languages is a proper subset of the class of CFLs.)

Proof.

1. Let *L* be a regular language, and let $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA which recognises *L*. $G := \langle N, \Sigma, P, S \rangle$ is defined as follows:

$$-N:=Q,\,S:=q_0$$

– if
$$\delta({m q},{m a})={m q}'$$
, then ${m q} o {m a}{m q}'\in{m P}$.

– if
$$q\in F$$
, then $q
ightarrow arepsilon\in P$

Obviously a *w*-labelled run in \mathfrak{A} from q_0 to *F* corresponds to a derivation of *w* in *G*, and vice versa. Thus $L(\mathfrak{A}) = L(G)$

(example on the board).

2. An example is $\{a^nb^n \mid n \ge 1\}$ (see Ex. B.6).

Context-Free Grammars and Languages

Seen:

• CFLs are more expressive than regular languages

Context-Free Grammars and Languages

Seen:

• CFLs are more expressive than regular languages

Open:

12 of 30

• Decidability of word problem

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

The Word Problem

- Goal: given $G = \langle N, \Sigma, P, S \rangle$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not
- For regular languages this was easy: just let the corresponding DFA run on w.
- But here: how to decide when to stop a derivation?
- **Solution:** establish normal form for grammars which guarantees that each nonterminal produces at least one terminal symbol
- only finitely many combinations to be inspected

Chomsky Normal Form I

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

A
ightarrow BC or A
ightarrow a

Chomsky Normal Form I

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$A
ightarrow BC$$
 or $A
ightarrow a$

Example B.9

Let $S \rightarrow ab \mid aSb$ be the grammar which generates $L := \{a^n b^n \mid n \ge 1\}$. An equivalent grammar in Chomsky NF is

$S ightarrow AB \mid AC$	(generates L)
A ightarrow a	(generates $\{a\}$)
B ightarrow b	(generates $\{b\}$)
$\mathcal{C} ightarrow \mathcal{SB}$	(generates $\{a^n b^{n+1} \mid n \ge 1\}$)

Chomsky Normal Form II

Theorem B.10

Every CFL L (with $\varepsilon \notin$ L) is generatable by a CFG in Chomsky NF.

Chomsky Normal Form II

Theorem B.10

Every CFL L (with $\varepsilon \notin L$) is generatable by a CFG in Chomsky NF.

Proof.

Let *L* be a CFL, and let $G = \langle N, \Sigma, P, S \rangle$ be some CFG which generates *L*. The transformation of *P* into rules of the form $A \rightarrow BC$ and $A \rightarrow a$ proceeds in three steps:

- 1. terminal symbols only in rules of the form $A \rightarrow a$ (thus all other rules have the shape $A \rightarrow A_1 \dots A_n$)
- 2. elimination of "chain rules" of the form $A \rightarrow B$
- 3. elimination of rules of the form $A \rightarrow A_1 \dots A_n$ where n > 2

(details omitted)

The Word Problem Revisited

Goal: given $w \in \Sigma^+$ and $G = \langle N, \Sigma, P, S \rangle$ such that $\varepsilon \notin L(G)$, decide if $w \in L(G)$ or not

(If $w = \varepsilon$, then $w \in L(G)$ easily decidable for arbitrary G)

Approach by Cocke, Younger, Kasami (CYK algorithm):

- 1. transform G into Chomsky NF
- 2. let $w = a_1 \dots a_n \ (n \ge 1)$
- **3.** let $w[i, j] := a_i \dots a_j$ for every $1 \le i \le j \le n$
- 4. consider segments w[i, j] in order of increasing length, starting with w[i, i] (i.e., single letters)
- 5. in each case, determine $N_{i,j} := \{A \in N \mid A \Rightarrow^* w[i,j]\}$
- 6. test whether $S \in N_{1,n}$ (and thus, whether $S \Rightarrow^* w[1, n] = w$)

The CYK Algorithm I

Algorithm B.11 (CYK Algorithm)

```
Input: G = \langle N, \Sigma, P, S \rangle in Chomsky NF, w = a_1 \dots a_n \in \Sigma^+
Question: w \in L(G)?
Procedure: for i := 1 to n do
                 N_{i,i} := \{A \in N \mid A \to a_i \in P\}
              next i
              for d := 1 to n - 1 do % compute N_{i,i+d}
                 for i := 1 to n - d do
                   j := i + d; N_{i,j} := \emptyset;
                    for k := i to j - 1 do
                      N_{i,i} := N_{i,i} \cup \{A \in N \mid \text{there is } A \rightarrow BC \in P\}
                                                   with B \in N_{i,k}, C \in N_{k+1,i}
                   next k
                 next i
              next d
Output: "yes" if S \in N_{1,n}, otherwise "no"
```

18 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Thomas Noll b-it Bonn, 16-20 March 2015

The CYK Algorithm II

Example B.12

- $G: S \rightarrow SA \mid a$ $A \rightarrow BS$ $B \rightarrow BB \mid BS \mid b \mid c$
- w = abaaba
- Matrix representation of N_{i,j}

(on the board)

The Word Problem for Context-Free Languages

Seen:

• Word problem decidable using CYK algorithm

The Word Problem for Context-Free Languages

Seen:

• Word problem decidable using CYK algorithm

Open:

• Emptiness problem

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

The Emptiness Problem

22 of 30

Thomas Noll

- Goal: given $G = \langle N, \Sigma, P, S \rangle$, decide whether $L(G) = \emptyset$ or not
- For regular languages this was easy: check in the corresponding DFA whether some final state is reachable from the initial state.
- Here: test whether start symbol is productive, i.e., whether it generates a terminal word

The Emptiness Test

```
Algorithm B.13 (Emptiness Test)

Input: G = \langle N, \Sigma, P, S \rangle

Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive;

repeat

if there is A \rightarrow \alpha \in P such that

all symbols in \alpha productive then

mark A as productive;

end;

until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```


The Emptiness Test

Algorithm B.13 (Emptiness Test) Input: $G = \langle N, \Sigma, P, S \rangle$ Question: $L(G) = \emptyset$? Procedure: mark every $a \in \Sigma$ as productive; repeat if there is $A \to \alpha \in P$ such that all symbols in α productive then mark A as productive; end; until no further productive symbols found; Output: "no" if S productive, otherwise "yes"

Example B.14

:
$$S \rightarrow AB \mid CA$$

 $A \rightarrow a$
 $B \rightarrow BC \mid AB$
 $C \rightarrow aB \mid b$

G

(on the board)

23 of 30 Foundations of Informatics/Formal Languages and Semantics, Part B Thomas Noll b-it Bonn, 16-20 March 2015

The Emptiness Problem for CFLs

Seen:

• Emptiness problem decidable based on productivity of symbols

The Emptiness Problem for CFLs

Seen:

• Emptiness problem decidable based on productivity of symbols

Open:

Closure properties of CFLs

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then • $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \to S_1S_2\} \cup P_1 \cup P_2$ generates $L_1 \cdot L_2$;

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then

- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \rightarrow S_1S_2\} \cup P_1 \cup P_2$ generates $L_1 \cdot L_2$;
- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \rightarrow S_1 \mid S_2\} \cup P_1 \cup P_2$ generates $L_1 \cup L_2$; and

Theorem B.15

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then

- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \rightarrow S_1S_2\} \cup P_1 \cup P_2$ generates $L_1 \cdot L_2$;
- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \rightarrow S_1 \mid S_2\} \cup P_1 \cup P_2$ generates $L_1 \cup L_2$; and
- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1$ and $P := \{S \rightarrow \varepsilon \mid S_1S\} \cup P_1$ generates L_1^* .

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.

• Both $L_1 := \{a^k b^k c^l \mid k, l \in \mathbb{N}\}$ and $L_2 := \{a^k b^l c^l \mid k, l \in \mathbb{N}\}$ are CFLs, but not $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ (without proof).

Negative Results

Theorem B.16

The set of CFLs is not closed under intersection and complement.

Proof.

- Both $L_1 := \{a^k b^k c^l \mid k, l \in \mathbb{N}\}$ and $L_2 := \{a^k b^l c^l \mid k, l \in \mathbb{N}\}$ are CFLs, but not $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ (without proof).
- If CFLs were closed under complement, then also under intersection (as $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$).

Closure Properties of CFLs

Overview of Decidability and Closure Results

Decidability Results						
Class	$w \in L$	$L=\emptyset$	$L_{1} = L_{2}$			
Reg	+ (A.38)	+ (A.40)	+ (A.42)			
CFL	+ (B.11)	+ (B.13)	_			

Closure Properties of CFLs

28 of 30

Overview of Decidability and Closure Results

Decidability Results						
Class	$w \in L$	$L = \emptyset$	$L_{1} = L_{2}$			
Reg	+ (A.38)	+ (A.40)	+ (A.42)			
CFL	+ (B.11)	+ (B.13)	-			

Closure Results							
Class	$L_1 \cdot L_2$	$L_1 \cup L_2$	$L_1 \cap L_2$	Ī	L*		
Reg	+ (A.28)	+ (A.18)	+ (A.16)	+ (A.14)	+ (A.29)		
CFL	+ (B.15)	+ (B.15)	– (B.16)	– (B.16)	+ (B.15)		

Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

The Word Problem for CFLs

The Emptiness Problem for CFLs

Closure Properties of CFLs

Outlook

Outlook

Outlook

- Pushdown automata (PDA)
- Equivalence problem for CFG and PDA (" $L(X_1) = L(X_2)$?") (generally undecidable, decidable for DPDA)
- Pumping Lemma for CFL
- Greibach Normal Form for CFG
- Construction of parsers for compilers
- Non-context-free grammars and languages (context-sensitive and recursively enumerable languages, Turing machines—see Week 3)

