
Seminar on Probabilistic Programming (SS16)
— Introductory Meeting —

Christian Denhert Sebastian Junges Benjamin Kaminski
Joost-Pieter Katoen Christoph Matheja Federico Olmedo

RWTH Aachen University
Software Modeling and Verification Group

April 13th, 2016

Outline

1 Motivation

2 Seminar Guidelines

3 Seminar Topics

4 Final Remarks

1 / 30

Outline

1 Motivation

2 Seminar Guidelines

3 Seminar Topics

4 Final Remarks

2 / 30

Probabilistic Programs – Definition

What is a Probabilistic Program?

An ordinary program,
imperative
functional
logical

that allows for probabilistic choices,
randomly choose a process with
which communicate
select a prime number in [1..n2]
flip a (fair/biased) coin

whose outcomes determine the pro-
gram behaviour

input-output relation
runtime

Example
Probabilistic program that
simulates a geometric
distribution:

n := 0;
repeat

n := n + 1;

c := coin_flip(0.5)
until (c = heads);
return n

3 / 30

Relevance of Randomization

Algorithms speed-up
probabilistic Quicksort
Rabin–Miller primality test
verification of matrix multiplication

Solution to problems where deterministic techniques fail
dinning philosopher problems [Lehmann & Rabin ’81]
leader election [Angluin ’80]

Multiple application domains
cryptography
communication
data mining
computer vision

4 / 30

Outline

1 Motivation

2 Seminar Guidelines

3 Seminar Topics

4 Final Remarks

5 / 30

Goals

Aims of this seminar

Independent understanding of a scientific topic
Preparation of your own report on this topic
Oral presentation of the topic

6 / 30

Requirements on Report

Layout

Length of ≈ 15 pages, with font size 12pt using “standard” page
layout
Use ordinary word processor or, preferably, LaTeX

LaTeX template available on seminar web page.
Recommended reading: The Not So Short Introduction to LaTeX 2ϵ,
Tobias Oetiker

Language: English (German only possible for bachelor students)

7 / 30

http://moves.rwth-aachen.de/wp-content/uploads/SS16/pp/report-template-PP16.zip
https://tobi.oetiker.ch/lshort/lshort.pdf

Requirements on Report

Content

Independent writing (e.g. own examples)
Plagiarism: taking text blocks (from literature or web) without source
indication causes immediate exclusion from this seminar

Discuss content with your supervisor
Include references to all consulted literature

Readability

Correct usage of spelling and grammar
≥ 10 errors per page =⇒ abortion of correction

Clear, cohesive and concise
Recommended reading: Learn Technical Writing in Two Hours per
Week, Norman Ramsey

Formal language

8 / 30

http://www.cs.tufts.edu/~nr/pubs/learn-two.pdf
http://www.cs.tufts.edu/~nr/pubs/learn-two.pdf

Requirements on Talk

Talk

Language: English (German only possible for bachelor students)
Duration: 40 minutes (+5’ of Q&A). Overtime is bad!
Focus your talk on the audience
Use descriptive (enumerated) slides:

≤ 15 lines of text
use colors in a useful manner

Ask and prepare yourself for questions. Prepare backup slides to
anticipated questions
Read this HowTo on Presentations before preparing the slides
Discuss with your supervisor the possibility of a rehearsal

9 / 30

https://moves.rwth-aachen.de/wp-content/uploads/SS14/ct14/HowToPresentations.pdf

Requirements on Talk

Day of the Talk

Either send slides as PDF to your supervisor or bring your own lap-
top. If so you must ensure you have one of the following connectors:

VGA
HDMI
Mac Displayport

Students are required to attend all talks

10 / 30

Important Dates

Deadlines
23rd May Report due
19th June Slides due
29-30th June Seminar

Missing a deadline causes immediate exclusion from the seminar
Report and slide hand-in is done by email to your supervisor

11 / 30

Outline

1 Motivation

2 Seminar Guidelines

3 Seminar Topics

4 Final Remarks

12 / 30

Selecting your Topic

Procedure

We hand out a sheet with list of topics with topic number
We give a short presentation of the topics

Topics 1−9: master students
Topics 10−13: bachelor students

You indicate the preference of your topics (first, second, third).
We do our best to find an adequate topic-student assignment. (Dis-
claimer: no guarantee for an optimal solution)
Assignment will be published on website by 18th April
You contact your supervisor to get things started

13 / 30

1: Static Analysis I

Problem: Approximate the probability that a program establishes a
given assertion ϕ.

Solution Overview: Infer the whole
program behaviour from finitely many
executions

Choose (by program simulation) a
finite set of executions with overall
high probability (e.g. 0.95)
Compute the probability of ϕ within
this set of executions using symbolic
execution
Use this probability to give guaran-
teed bounds for the probability of ϕ
in the whole program
Instead of computing exact prob-
abilities, approximate them using
branch–and–bound techniques over
polyhedra (bounding boxes)

n := 0;
repeat

n := n + 1;

c := coin_flip(0.5)
until (c = heads);
return n

14 / 30

2: Static Analysis II

Problem: establish probabilistic assertions of loops upon termina-
tion

x := 0; while (|x| < 100)
{

x := x+1 [1/2] x−1
}

Show that upon loop termination, Pr [x = 100] = Pr [x = −100].

Solution Overview: synthesise a martingale and apply the optinal
stopping theorem (OST)

Xn: value of x after n-th iteration τ : loop stopping time

E[Xn+1|Xn, ..,X0] =
1
2 (Xn+1) + 1

2 (Xn−1) = Xn ◀ Xn matingale

E[Xτ] = E[X0] ◀ OST
100 · Pr [x = 100] + (−100) · Pr [x = −100] = 0

15 / 30

3: Relational Program Reasoning

Problem: Establish “relational” properties between pair of proba-
bilistic processes

n1 := 0;
for (i1 := 0; i1 < k; i1++)

b1 := p1 · ⟨tt⟩+ (1−p1) · ⟨ff⟩;
if (b1) then n1 ++;

return n1;

n2 := 0;
for (i2 := 0; i2 < k; i2++)

b2 := p2 · ⟨tt⟩+ (1−p2) · ⟨ff⟩;
if (b2) then n2 ++;

return n2;

p1 ≥ p2 =⇒ ∀a. Pr[n1 ≥ a] ≥ Pr[n2 ≥ a]

Overview solution: exploit connection between probabilistic cou-
plings and relational Hoare logic

Translate a proof argument based on couplings into a deductive ar-
gument using (relational) Hoare logic

16 / 30

4: Deductive Verification

Problem: Bound the probability that a program fails to satisfy its
specification

Solution Overview: Use a probabilistic Hoare logic, where triples
are augmented with the failure probability

⊢β {P} c {Q}

c : probabilistic program
P/Q : pre–/post–condition
β : bound on the probability

of failing to establish Q
Proof system
Application: verification of accuracy for differential privacy mecha-
nisms

17 / 30

5: Runtime Analysis

Problem: Determine the average runtime of a probabilistic pro-
gram.

repeat
{b := heads} [1/2] {b := tail};

until (b := heads)

E[t] = 1 · 1
2 +2 · 1

4 +3 · 1
8 + · · · = 2

1 2 3 4 5

1/2

1/4

1/8

1/16

1/32

k

Pr
[t
=

k]

Solution Overview: Use a continuation passing style through run-
time transformer

ert[c] : T → T

t is the runtime of the
computation following c =⇒ ert[c](t) is the runtime of c, plus

the computation following c

18 / 30

6: Game-Based Abstraction Refinement

input: ANSI-C program with probabilistic
features

output: probability to reach certain states

approach: start with coarse overapproximation
and refine as necessary

19 / 30

7: Probabilistic CTL*

PCTL: The probabilistic version of Computation Tree Logic
PCTL* model-checking well-studied for finite-state MDPs
This paper: Develop a proof system to verify PCTL* properties for
countable-state systems

probabilistic program P
P ⊢ Φ

PCTL* formula Φ

Soundness: P ⊢ Φ implies P |= Φ

Completeness for finite-state systems: P |= Φ implies P ⊢ Φ

20 / 30

8: Analysis of Probabilistic Pushdown Automata

Analysing probabilistic pushdown automata

PGCL Markov Decision
Proc.

WHILE +
coin flips

?

Labelled Trans.
Sys.

& Probabilistic
Branching

21 / 30

8: Analysis of Probabilistic Pushdown Automata

Analysing probabilistic pushdown automata

PGCL Markov Decision
Proc.

WHILE +
coin flips

?

Labelled Trans.
Sys.

& Probabilistic
Branching

recursive PCGL MDP
& Stack

21 / 30

8: Analysis of Probabilistic Pushdown Automata

Analysing probabilistic pushdown automata

PGCL Markov Decision
Proc.

WHILE +
coin flips

?

Labelled Trans.
Sys.

& Probabilistic
Branching

recursive PCGL MDP
& Stack

Prob.
Pushdown
Automata

21 / 30

8: Analysis of Probabilistic Pushdown Automata

Analysing probabilistic pushdown automata

PGCL Markov Decision
Proc.

WHILE +
coin flips

?

Labelled Trans.
Sys.

& Probabilistic
Branching

recursive PCGL MDP
& Stack

Prob.
Pushdown
Automata

• Probability of reaching a state (with an empty stack) ?
• with probability 1 ?
• with probability ?

• Expected number of steps until reaching a state ?
• finite?
• bounded?

…..

p

21 / 30

9: Kleene Algebra with Tests

KAT = Kleene Algebra with Tests
Algebraic approach to program verification
Enables equational reasoning about program equivalence
E.g. Kleene Normal Form Theorem (one while loop suffices) prov-
able by purely algebraic means without knowing anything about the
program using KAT

NetKAT extends KAT by communication primitives
Probabilistic NetKAT extends NetKAT by probability measures on
communication histories

22 / 30

10: Symmetry Reduction

observation: lots of symmetry in (PRISM) models
idea: avoid state space explosion by exploiting symmetries
approach: construct new program that captures symmetries

23 / 30

11: Probabilistic Assertions

Traditional programs:
assert expr
expr must hold on each program execution passing assert

Probabilistic programs have probabilistic outcomes –
Traditional assertions not suitable
Approach of this paper:

passert expr, p, c
expr must hold with proability p at confidence c
Efficient evaluation scheme to verify probabilistic assertions

Bachelor students preferred

24 / 30

12: Bringing Probabilistic Programming to MS Excel

Probabilistic Programming in Excel

Table with Player
Skills

Table with
expected payoff

Placing a bet:

25 / 30

12: Bringing Probabilistic Programming to MS Excel

Probabilistic Programming in Excel

Table with Player
Skills

Table with
expected payoff

Placing a bet:

Skill is
correlated with

winning

25 / 30

12: Bringing Probabilistic Programming to MS Excel

Probabilistic Programming in Excel

Table with Player
Skills

Table with
expected payoff

Placing a bet:

Skill is
correlated with

winning

Win(P1.skill, P2.skill)
….

25 / 30

12: Bringing Probabilistic Programming to MS Excel

Probabilistic Programming in Excel

Table with Player
Skills

Table with
expected payoff

Placing a bet:

Skill is
correlated with

winning

Win(P1.skill, P2.skill)
….

Probabilistic Programming + Data tables

25 / 30

12: Bringing Probabilistic Programming to MS Excel

Probabilistic Programming in Excel

Table with Player
Skills

Table with
expected payoff

Placing a bet:

Skill is
correlated with

winning

Win(P1.skill, P2.skill)
….

Probabilistic Programming + Data tables
Excel

25 / 30

12: Bringing Probabilistic Programming to MS Excel

Probabilistic Programming in Excel

Table with Player
Skills

Table with
expected payoff

Placing a bet:

Skill is
correlated with

winning

Win(P1.skill, P2.skill)
….

Probabilistic Programming + Data tables
Excel

Tabular

25 / 30

12: Bringing Probabilistic Programming to MS Excel

Probabilistic Programming in Excel

Table with Player
Skills

Table with
expected payoff

Placing a bet:

Skill is
correlated with

winning

Win(P1.skill, P2.skill)
….

Probabilistic Programming + Data tables

Tabular Excel

25 / 30

12: Bringing Probabilistic Programming to MS Excel

Probabilistic Programming in Excel

Table with Player
Skills

Table with
expected payoff

Placing a bet:

Skill is
correlated with

winning

Win(P1.skill, P2.skill)
….

Probabilistic Programming + Data tables

Tabular Excel
Semantics? 
Reduction to Tabular & Dependent Type System

25 / 30

13: Proving Almost–Sure Termination

Non–prob. programs terminate if its computations are finite
Probabilistic programs may admit infinite computations which occur
only with probability 0
More appropriate notion: Almost–sure termination

Program terminates with probability 1
More difficult to decide than termination problem for non–probabilistic
programs

In this paper:
New algorithm for (semi)deciding almost–sure termination
Construct terminating patterns that have probability one
Algorithm is complete for a certain class of programs called weakly
finite programs

26 / 30

Selecting your Topic

Please, choose your three preferred topics

27 / 30

Seminar Withdrawal

Withdrawal

You have up to 3 weeks to refrain from participating in the seminar,
once you are assigned your topic
Later cancellation causes a not passed grade for the seminar

28 / 30

Outline

1 Motivation

2 Seminar Guidelines

3 Seminar Topics

4 Final Remarks

29 / 30

Final Remarks

Resources and Contact Information

Seminar webpage: https://moves.rwth-aachen.de/teaching/
ss-16/pp/

Kick-off meeting slides
LaTeX template for the report
Topic-Student assignment
Support resources: LaTeX, witting scientific papers, giving presenta-
tions

Further inquiries:
federico.olmedo@cs.rwth-aachen.de

30 / 30

https://moves.rwth-aachen.de/teaching/ss-16/pp/
https://moves.rwth-aachen.de/teaching/ss-16/pp/
federico.olmedo@cs.rwth-aachen.de

	Motivation
	Seminar Guidelines
	Seminar Topics
	Final Remarks

