
Seminar on

“Verification of
Probabilistic Programs”

Federico Olmedo
federico.olmedo@cs.rwth-aachen.de

n := 0;
repeat

n := n + 1;
c := coin flip(0.5)

until (c=heads);
return n

Pr[n = k] =
�
1
2

�k

1

Seminar Details

Speaker:

Language: Pre-requisites:Structure & Schedule:

Software Modelling and Verification Group

RWTH Aachen University

FEDERICO OLMEDO

6 Weekly Presentations

16:30-17:45 Room 9U10 E3

Previous knowledge on
program logics and
semantics is ONLY advised.

2

Webpage:
http://moves.rwth-aachen.de/teaching/ss-15/vpp/

Agenda

Introduction to probabilistic programs

The problem of probabilistic program verification

Seminar content

3

Summary

Agenda

Introduction to probabilistic programs

The problem of probabilistic program verification

Seminar content

4

Summary

Probabilistic Programs — Basics

“Ordinary” Program

Distribution Sampling

+
randomly choose a process with which communicate

select a random prime in interval [1, n2]
flip a (fair/biased) coin;

What is a probabilistic program?

imperative (eg. Probabilistic C)

functional (eg. Church)

logical (eg. CHRISM)

…

In this seminar

Input
Output

Distribution

Output

P
ro
b

Probabilistic
Program

Input/Output behaviour:

5

Probabilistic Programs — Examples

c1 := coin flip(0.5);
c2 := coin flip(0.5);
return (c1, c2)

n := 0;
repeat

n := n + 1;
c := coin flip(0.5)

until (c=heads);
return n

6

Probabilistic Programs — Examples

c1 := coin flip(0.5);
c2 := coin flip(0.5);
return (c1, c2)

n := 0;
repeat

n := n + 1;
c := coin flip(0.5)

until (c=heads);
return n

c1

h t

c2
h 1/4 1/4

t 1/4 1/4

Output
Distribution

6

Probabilistic Programs — Examples

c1 := coin flip(0.5);
c2 := coin flip(0.5);
return (c1, c2)

n := 0;
repeat

n := n + 1;
c := coin flip(0.5)

until (c=heads);
return n

c1

h t

c2
h 1/4 1/4

t 1/4 1/4

n

1 2 … k …

1/2 1/4 1/2k

Output
Distribution

Output
Distribution

6

Applications in
several domains

Probabilistic Programs — Relevance

Probabilistic programs are simple
and intuitive to understand

Solution of problem where
deterministic techniques fail

Algorithms speed-up

Relevance of
Randomization

communication
cryptography

data
management

optimization

biology

…. computer
vision

7

Applications in
several domains

Probabilistic Programs — Relevance

Probabilistic programs are simple
and intuitive to understand

Solution of problem where
deterministic techniques fail

Algorithms speed-up

Relevance of
Randomization

communication
cryptography

data
management

optimization

biology

…. computer
vision

8

Probabilistic Programs — Application Domain

Probabilistic
Programs

9

Probabilistic Programs — Application Domain

Skill Ranking System

Probabilistic
Programs

9

Probabilistic Programs — Application Domain

Predator—Prey
Population Model

Skill Ranking System

Probabilistic
Programs

9

Probabilistic Programs — Application Domain

Dining Philosophers

Predator—Prey
Population Model

Skill Ranking System

Probabilistic
Programs

9

Probabilistic Programs — Application Domain

Miller—Rabin
Primality TestDining Philosophers

Predator—Prey
Population Model

Skill Ranking System

Probabilistic
Programs

9

Probabilistic Programs — Application Domain

Miller—Rabin
Primality TestDining Philosophers

Predator—Prey
Population Model Public-Key Encryption

Skill Ranking System
Graph Isomorphism

….

Probabilistic
Programs

9

Applications in
several domains

Probabilistic Programs — Relevance

Probabilistic programs are simple
and intuitive to understand

Solution of problem where
deterministic techniques fail

Algorithms speed-up

Relevance of
Randomization

communication
cryptography

data
management

optimization

biology

…. computer
vision

10

Randomization allows speeding up algorithms

QS(A) ,
if (|A|  1) then return (A);
i := b|A|/2c;
A< := {a0 2 A | a0 < A[i]};
A> := {a0 2 A | a0 > A[i]};
return

�
QS(A<) ++ A[i] ++ QS(A>)

�

Quicksort:

11

Randomization allows speeding up algorithms

QS(A) ,
if (|A|  1) then return (A);
i := b|A|/2c;
A< := {a0 2 A | a0 < A[i]};
A> := {a0 2 A | a0 > A[i]};
return

�
QS(A<) ++ A[i] ++ QS(A>)

�

Quicksort: Problem of Quicksort:

There exist “ill-behaved” inputs of size n
which require O(n2) comparisons.

In the average case, it performs fairly well:

But in the worst case, it does not:

On a random input of size n, it requires on
average O(n log(n)) comparisons (which
matches information theory lower bound).

How to narrow the gap between the worst and average case performance?

11

Randomization allows speeding up algorithms

Quicksort: Problem of Quicksort:

There exist “ill-behaved” inputs of size n
which require O(n2) comparisons.

In the average case, it performs fairly well:

But in the worst case, it does not:

On a random input of size n, it requires on
average O(n log(n)) comparisons (which
matches information theory lower bound).

How to narrow the gap between the worst and average case performance?

Choose the pivot at random!

For any input, the expected number of
comparisons matches the average case.

No “ill-behaved” input.

rQS(A) ,
if (|A|  1) then return (A);
i := rand[1 . . . |A|];
A< := {a0 2 A | a0 < A[i]};
A> := {a0 2 A | a0 > A[i]};
return

�
QS(A<) ++ A[i] ++ QS(A>)

�

11

Randomization allows speeding up algorithms

Computing the cardinality of the union of sets:

Problem: Incl-Excl Principle yields an expensive solution, the RHS has 2n-1 terms.

|S1 [S2 [. . . [Sn| =
X

i

|Si |�
X

i<j

|Si \ Sj |+
X

i<j<k

|Si \ Sj \ Sk | � . . .

✓
Incl-Excl

Principle

◆

Solution based on randomization:

We can approximate some
properties of a set from a
randomly chosen subset.

Random Sampling Technique

P’

P
P’ estimates P

12

Randomization allows speeding up algorithms

Computing the cardinality |S1 [S2 [. . . [Sn|

Solution based on randomization: sample an element and
use to estimate .|S1 [S2 [. . . [Sn|

x

⇤ 2 S1 [S2 [. . . [Sn

cov(x⇤) = |{i | x⇤ 2 Si}|

It can be shown that r is an unbiased estimator of , ie |S1 [S2 [. . . [Sn|

E[r] = |S1 [S2 [. . . [Sn|

Expected

value of r

13

m

:= |S1|+ . . .+ |S
n

|;
Draw a set S

⇤
from S1, . . . , Sn with probability Pr[S

i

] = |S
i

|
m

;
Draw an element x

⇤
from S

⇤
with uniform distribution;

r

:= m

cov(x⇤) ;

return (r)

Randomization allows speeding up algorithms

Another application of the Random Sampling technique

Approximate the area of a circle

14

Randomization allows speeding up algorithms

Another application of the Random Sampling technique

Approximate the area of a circle

Sample random points in the enclosing square. The
fraction of points lying in the circle approximates its area.

(The approximation improves as grows larger.) N⌅

Area() ⇡ Area(⌅) · N
N⌅

Nr of points hitting the circle

Total nr of random points

14

Randomization allows speeding up algorithms

Another application of the Random Sampling technique

Approximate the area of a circle

Sample random points in the enclosing square. The
fraction of points lying in the circle approximates its area.

(The approximation improves as grows larger.) N⌅

Approximate a definite integral

Area() ⇡ Area(⌅) · N
N⌅

Nr of points hitting the circle

Total nr of random points

14

Z b

a
f (x) dx ⇡ Area(⌅⌅) · N

N⌅⌅

Randomization allows speeding up algorithms

Testing against the null polynomial

Solution based on randomization:

Theorem (Schwartz-Zippel): let S ✓ R with |S | = k ·deg(p). If each com-

ponent of ā = (a1, . . . , an) is chosen independently and uniformly from S , then

Pr[p(ā) = 0 | p 6⌘ 0]  1/k .

Assume we have oracle access to a multivariate polynomial p in .

Determine whether p is identically zero.

O(·, . . . , ·) R[x1, . . . , xn]

Exploit the fact if and is chosen at random, is small.ā = (a1, . . . , an) Pr[p(ā) = 0]p 6⌘ 0

Alg. outputs “p 6⌘ 0” p 6⌘ 0

Alg. outputs “p ⌘ 0” p ⌘ 0

Pr[p 6⌘ 0 | output “p⌘0”]  1
k

15

Let S ✓ R with |S | = k ·deg(p)
Draw a1, . . . , an independently and uniformly from S ;

if O(a1, . . . , an) = 0 then return (”p ⌘ 0”)

else return (”p 6⌘ 0”)

Randomization allows speeding up algorithms

Testing against the null polynomial

Solution based on randomization:

Theorem (Schwartz-Zippel): let S ✓ R with |S | = k ·deg(p). If each com-

ponent of ā = (a1, . . . , an) is chosen independently and uniformly from S , then

Pr[p(ā) = 0 | p 6⌘ 0]  1/k .

Assume we have oracle access to a multivariate polynomial p in .

Determine whether p is identically zero.

O(·, . . . , ·) R[x1, . . . , xn]

Exploit the fact if and is chosen at random, is small.ā = (a1, . . . , an) Pr[p(ā) = 0]p 6⌘ 0

Alg. outputs “p 6⌘ 0” p 6⌘ 0

Alg. outputs “p ⌘ 0” p ⌘ 0

15

Let S ✓ R with |S | = k ·deg(p)
For i = 1 . . .m do

Draw a1, . . . , an independently and uniformly from S ;

if O(a1, . . . , an) 6=0 then return (“p 6⌘ 0”)
return (“p ⌘ 0”) Pr[p 6⌘ 0 | output “p⌘0”] 

�
1
k

�m

Randomization allows speeding up Algorithms

Abundance of Witnesses

Underlying techniques

Decision problem whose output depends on the presence (resp. absence) of a
witness to prove (resp. disprove) a property.

Witnesses abound in a given search space.

Given a witness, the property is “efficiently” verified.

Amplification by Independent Trials

Used in conjunction with the “abundance of witnesses” technique to reduce
the error probability.

Given an algorithm with error probability 𝜀, run it n independent times to
reduce the error probability to 𝜀n.

16

Randomization allows speeding up Algorithms

Abundance of Witnesses

Underlying techniques

p 6⌘ 0

Any S ✓ R with |S | � deg(p)

Any ā such that p(ā) 6= 0

Schwartz-Zippel theorem

Decision problem whose output depends on the presence (resp. absence) of a
witness to prove (resp. disprove) a property.

Witnesses abound in a given search space.

Given a witness, the property is “efficiently” verified.

Amplification by Independent Trials

Used in conjunction with the “abundance of witnesses” technique to reduce
the error probability.

Given an algorithm with error probability 𝜀, run it n independent times to
reduce the error probability to 𝜀n.

Other example: primality testing [Rabin ’76].

16

Applications in
several domains

Probabilistic Programs — Relevance

Probabilistic programs are simple
and intuitive to understand

Solution of problem where
deterministic techniques fail

Algorithms speed-up

Relevance of
Randomization

communication
cryptography

data
management

optimization

biology

…. computer
vision

17

Randomization circumvents the Limitations of Determinism
The Dinning Philosopher Problem

Theorem (Lehmann & Rabin ’81) there exists no
fully distributed and symmetric deterministic
algorithm for the dining philosopher problem.

Randomized Algorithm

while (true) do
(* Thinking Time *)

trying := true
while (trying) do
s := rand{left , right}
Wait until fork[s] is available and take it

If fork[¬s] is available
then take it and set trying to false
else drop fork[s]

(* Eating Time *)

Drop both forks

Do not pick always the same fork first.
Flip a coin to choose.

If the second fork is not available,
release the first and flip again the coin.

Idea:

Algorithm is deadlock-free:
At any time, if there is a hungry philosopher,
with probability one some philosopher will
eventually eat. Algorithm can also be
adapted to prevent starvation (ie the hungry
philosopher will eventually eat).

18

Randomization circumvents the Limitations of Determinism
Leader Election

Randomized Algorithm

Aim: to choose a leader node in a network.

Network consists of n identical nodes P1,…,Pn
connected in a ring fashion.

Transmission of messages is allowed between
consecutive nodes in the ring.

At the end of the process all nodes must agree on
the election of the leader.

P1

P2

P3

P4

P5

Pn-1

Pn

Theorem (Angluin ’80) there exists no deterministic algorithm for carrying out the
election in a ring of identical processes.

Each nodes chooses a random name from {1,
…,K} and propagates it around the ring.

At the end of the propagation each process
has a list of the names of all the nodes.

If there is a name that belongs to only one
node, then this is the leader (in case of several,
choose eg the largest)

If there is no unique name, repeat the process.

Idea:
repeat

s := empty list ;
name :

= rand{1, . . . ,K};
For i = 1 . . . n do

s := s ++ [name];
send(name) to next node ;

receive(name) from previous node

until (at least one name in s is unique)

return max{n 2 s | n occus only once in s}

19

Randomization circumvents the Limitations of Determinism

Underlying technique

Symmetry Breaking in Distributed Systems

For many problems on distributed systems, deterministic solutions do not
exists when objects are to be treaded identically.

Using randomization to choose among identical objects may help solving the
symmetry problem.

20

Probabilistic Programs — Tradeoffs

Advantages

Reduction of time/space complexity

Reduction of communication complexity in the distributed setting

Allows tackling problems that have no deterministic solution

Probabilistic programs are simple and easy to understand

Wide range of application domains

21

Probabilistic Programs — Tradeoffs

Advantages

Reduction of time/space complexity

Reduction of communication complexity in the distributed setting

Allows tackling problems that have no deterministic solution

Probabilistic programs are simple and easy to understand

Wide range of application domains

Disadvantages

✏ = 0

✏ > 0

Quicksort, dining philosopher, leader election

Definite integral, testing against null polynomial

Absolute correctness is sometimes sacrificed: probabilistic programs are
“correct with probability “  1�✏

21

Probabilistic Programs — Tradeoffs

Advantages

Reduction of time/space complexity

Reduction of communication complexity in the distributed setting

Allows tackling problems that have no deterministic solution

Probabilistic programs are simple and easy to understand

Wide range of application domains

Disadvantages

✏ = 0

✏ > 0

Quicksort, dining philosopher, leader election

Definite integral, testing against null polynomial

Absolute correctness is sometimes sacrificed: probabilistic programs are
“correct with probability “  1�✏

LAS VEGAS ALGORITHM

Constant running time (always fast)

MONTE CARLO ALGORITHM

Running time is a random variable

21

Probabilistic Programs — Reliability

Correctness Running Time

ALWAYS

NEVER SHORT

LONG

Correctness Running Time

ALWAYS

NEVER SHORT

LONG

Deterministic Algorithm Probabilistic Algorithm

Faster, but
“less”correct

Is the probabi-
listic algorithm
still reliable?

22

Probabilistic Programs — Reliability

Correctness Running Time

ALWAYS

NEVER SHORT

LONG

Correctness Running Time

ALWAYS

NEVER SHORT

LONG

Deterministic Algorithm Probabilistic Algorithm

Faster, but
“less”correct

Is the probabi-
listic algorithm
still reliable?

Yes, absolutely!

22

Probabilistic Programs remain Reliable
Verifying Data Consistency

communication

RI RII

x=x1 . . . xn y=y1 . . . yn
Goal: RI and RII must communicate to verify
whether

Requirement: minimize the # of bits exchanged.

x=y (x , y 2 {0,1}n).

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

Idea: use random fingerprints of x and y.

Routine of RI ,
p

:

= rand{i 2 [2, n

2
] | prime(i)};

s

:

= x mod p;

send(p, s) to RII;

Routine of RII ,
receive(p, s) from RI;

t

:

= y mod p;

if (s=t) then return (“x=y”)

else return (“x 6=y”)

#bits

exchanged

= #bits(p) + #bits(s)  2 log2(n
2
)

 n2  p  n2

Prot. outputs “x 6=y” x 6=y

Pr[x 6= y | output “x=y”]  ln(n2)

n

23

Probabilistic Programs remain Reliable
Verifying Data Consistency

communication

RI RII

x=x1 . . . xn y=y1 . . . yn
Goal: RI and RII must communicate to verify
whether

Requirement: minimize the # of bits exchanged.

x=y (x , y 2 {0,1}n).

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

Idea: use random fingerprints of x and y.

Routine of RI ,
p

:

= rand{i 2 [2, n

2
] | prime(i)};

s

:

= x mod p;

send(p, s) to RII;

Routine of RII ,
receive(p, s) from RI;

t

:

= y mod p;

if (s=t) then return (“x=y”)

else return (“x 6=y”)

#bits

exchanged

= #bits(p) + #bits(s)  2 log2(n
2
)

 n2  p  n2

Prot. outputs “x 6=y” x 6=y

Pr[x 6= y | output “x=y”]  ln(n2)

n

bits exch. prob. error
n=1010 133 4.60 x 10-09

n=1020 266 9.21 x 10-19

n=1030 398 1.38 x 10-28

n=1040 532 1.84 x 10-38

n=1050 664 2.30 x 10-48

23

Agenda

Introduction to probabilistic programs

The problem of probabilistic program verification

Seminar content

24

Summary

Probabilistic Programs — The Verification Problem

Input/Output behaviour of probabilistic programs:

Input
Output

Distribution

Output

P
ro
b

Probabilistic
Program

Verification of probabilistic programs:

Probabilistic
Program VERIFICATION “Probabilistic” Assertion

about the Program Output

Property holds with a given probability 

Assertion about the expected (ie
average) value of a variable

Pr[error]  0.02

E[r]  10

25

Probabilistic Programs — The Verification Problem

m

:= |S1|+ . . .+ |S
n

|;
Draw a set S

⇤
from S1, . . . , Sn with probability Pr[S

i

] = |S
i

|
m

;
Draw an element x

⇤
from S

⇤
with uniform distribution;

r

:= m

cov(x) ;

return (r)

repeat

s := empty list ;
name :

= rand{1, . . . ,K};
For i = 1 . . . n do

s := s ++ [name];
send(name) to next node ;

receive(name) from previous node

until (at least one name in s is unique)

return max{n 2 s | n occus only once in s}

 Examples of Probabilistic Assertions

Cardinality of sets union

E[r] = |S1 [S2 [. . . [Sn|

Leader Election

Pr[termination] = 1

26

?

Probabilistic Programs — The Verification Problem

Let p be probability that after the random choices of the node names, at least one
name is unique. We know that 0 < p < 1.

Pr[term] = 1� Pr[non�term]

= 1� Pr
h
in all rounds, there

is no unique name

i

= 1� lim
n!1

(1� p)n

= 1

27

Probabilistic Programs — The Verification Problem

Let p be probability that after the random choices of the node names, at least one
name is unique. We know that 0 < p < 1.

Insight: (set of) diverging
executions have probability 0

Intricacy

Pr[term] = 1� Pr[non�term]

= 1� Pr
h
in all rounds, there

is no unique name

i

= 1� lim
n!1

(1� p)n

= 1

Probabilistic programs may
terminate with probability 1, and
still admit diverging executions.

27

Probabilistic Programs — The Verification Problem

Let p be probability that after the random choices of the node names, at least one
name is unique. We know that 0 < p < 1.

Insight: (set of) diverging
executions have probability 0

Intricacy

ALMOST-SURE
TERMINATION (AST)

Pr[term] = 1� Pr[non�term]

= 1� Pr
h
in all rounds, there

is no unique name

i

= 1� lim
n!1

(1� p)n

= 1

Probabilistic programs may
terminate with probability 1, and
still admit diverging executions.

27

Probabilistic Programs — The Verification Problem

Let p be probability that after the random choices of the node names, at least one
name is unique. We know that 0 < p < 1.

Insight: (set of) diverging
executions have probability 0

Intricacy

ALMOST-SURE
TERMINATION (AST)

repeat
b := flip coin();

until (b = heads)

Pr[term] = 1� Pr[non�term]

= 1� Pr
h
in all rounds, there

is no unique name

i

= 1� lim
n!1

(1� p)n

= 1

Another example of AST:

Probabilistic programs may
terminate with probability 1, and
still admit diverging executions.

27

Probabilistic Programs — The Verification Problem

28

 How to verify probabilistic assertions?
 It is possible to extend standard verification techniques of sequential programs:

 Hoare logic Weakest precondition calculus

Assertions of the form {P} c {Q}, where P and Q
are predicates over program states

final stateinitial state s s 0c

Deductive system (ie proof rules) to derive valid
assertions (one rule per language construction)

Proof objects are derivations (trees)

{P} c {Q} is valid i↵ P(s) =) Q(s 0)

2.2.3 Hoare logic

Hoare logic is defined by a set of inference rules producing triples.

{P}skip{P}
{P ^ e 6= 0}s1{Q} {P ^ e = 0}s2{Q}

{P}if e then s1 else s2{Q}

{P [x e]}x := e{P}
{I ^ e 6= 0}s{I}

{I}while e do s{I ^ e = 0}

{P}s1{Q} {Q}s2{R}
{P}s1; s2{R}

{P 0}s{Q0} |= P) P 0 |= Q0) Q

{P}s{Q}

where P [x e] denotes the formula obtained by syntactically replacing all occurrences of the program
variable x by e. In the rule for the while loop, I is traditionally called a loop invariant.

Theorem 2.2.3 (Soundness of Hoare logic) This set of rules is correct: any derivable triple is valid.

Proof. This is proved by induction on the derivation tree of the considered triple. Thus, for each rule,
assuming that the triples in premises are valid, we show that the triple in conclusion is valid too. The
proofs are straightforward except for the sequence and while rules, that we detail now.

For the sequence: let’s assume {P}s1{Q} and {Q}s2{R} are valid. To show that {P}s1; s2{R} is
valid, let’s consider some state ⌃ such that JP K⌃ holds and some execution ⌃, (s1; s2) ⇤

⌃

0,skip.
By the Sequence execution lemma, we have an intermediate step ⌃

00 such that ⌃, s1 ⇤
⌃

00,skip
and ⌃

00, s2 ⇤
⌃

0,skip. Since JP K⌃ holds and {P}s1{Q} is valid, JQK⌃00 holds, and then since
{Q}s2{R} is valid, JRK⌃0 holds, q.e.d.

For the while loop: let’s assume {I^e 6= 0}s{I} is valid. To show that {I}while e do s{I^e = 0}
is valid, let’s consider some state ⌃ such that JIK⌃ holds and some execution ⌃,while e do s ⇤

⌃

0,skip. We proceed by induction on the number of steps of this execution. We have two cases
depending on whether the condition JeK⌃ is 0 or not. If it is 0 then the execution terminates in just one
step, and ⌃

0
= ⌃, hence JI ^ e = 0K⌃0 holds. If the condition is not 0, then the execution has the form

⌃,while e do s ⌃, (s;while e do s) ⇤
⌃

0,skip. Again using the Sequence execution lemma,
there is a state ⌃00 such that ⌃, s ⇤

⌃

00,skip and ⌃

00,while e do s ⇤
⌃

0,skip. Since JI^e 6= 0K⌃
holds and {I ^ e 6= 0}s{I} is valid, JIK⌃00 holds. By induction, since ⌃

00,while e do s ⇤
⌃

0,skip
has fewer steps than the original execution, we get that JI ^ e = 0K⌃0 holds, q.e.d.

2.2.4 Completeness

A major difficulty when trying to prove a program using Hoare logic rules is the need to guess the
appropriate intermediate predicates, for example the intermediate predicate of a sequence, or the loop
invariant for the while rule. E.g., our program ISQRT cannot be proved without a bit of thinking: one
needs to discover a suitable loop invariant.

On a theoretical point of view, the question is the completeness of Hoare logic: are all valid triples
derivable from the rules? The answer is given by the following theorem.

Theorem 2.2.4 (Completeness of Hoare logic) The set of rules of Hoare logic is relatively complete:
if the logic language is expressive enough, then any valid triple {P}s{Q} can be derived using the rules.

The logic in which annotations are written needs to be expressive enough, so that the loop invariants
needed can be obtained, in theory. It is the case here since we have multiplication operator, hence Peano
arithmetic (non-linear integer arithmetic). It is known that this logic has the expressive power of Turing

10

Given in terms of predicate transformer
wp[c] : P(⌃) ! P(⌃)

wp[c](Q) =

⇢
set of initial states that lead

to a final state satisfying Q

�

Example:

Example:

Connection to Hoare logic

{P} c {Q} i↵ P =) wp[c](Q)

Transformer is defined by induction on
the structure of c:

wp[c]

wp[skip](Q) = Q

wp[x := e](Q) = Q[x/E]

wp[c1; c2](Q) = (wp[c1] � wp[c2])(Q)

{x � 0} x

:= x+2 {x � 0}

wp[x := x+2](x � 0) = x � �2

Agenda

Introduction to probabilistic programs

The problem of probabilistic program verification

Seminar content

29

Summary

Seminar Content

30

Different extension of Hoare logic and weakest precondition calculus for
probabilistic programs.

Probabilistic predicate transformers
[McIver & Morgan ’96]

Hartog’s Hoare logic [Hartog ’02]

Relational Hoare logics [Barthe ’09,’12]

Reward function over the set of
final states.

f : ⌃ ! R

wp[c](f) = Expected reward of c wrt f

expected value of f wrt
distribution of final states

variable x is geometrically distributed

{true} c {8i • (i0) _ Pr[x=i] = (1/2)i}

Relates the executions of a program from
two different initial states.

{=L} c {=L}

Pre- and post-conditions are relations
(rather than predicates) over program
states.

c in non-interferent

Agenda

Introduction to probabilistic programs

The problem of probabilistic program verification

Seminar content

31

Summary

Summary

32

“Ordinary” Program

Distribution Sampling

+

What is a probabilistic program?

Applications in
several domains

Probabilistic programs are simple
and intuitive to understand

Solution of problem where
deterministic techniques fail

Algorithms speed-up

Relevance of
Randomization

We can extend traditional program
verification techniques to probabi-
listic programs.

