n = 0;
repeat
) n:=n-4 1;
Seminar on ¢ := coin_f1ip(0.5)
until (c=heads);
return n

“Verification of
Probabilistic Programs”

RIFIT
FiEn

Pr[n = k] = (%)k

Lehrstuhl filr RWTI.I
Informatik 2

‘ Softwaremodellierung
Bl und Verifikation

Federico Olmedo
federico.olmedo@cs.rwth-aachen.de



Speaker:

FEDERICO OLMEDO

4

Structure & Schedule:

June 2015

SUN |MON| TUE | WED THU‘ FRI | SAT
t 2(3)4 5 o
' ‘ | - July 2015
7 8 9 @ 11 12 13 N] TUE WED|TH(1| FRI , SAT

14 15 16 (17) 18 19 20 (1) 2 3 |4
21 22 23 24 @‘26 27 7 e 9 10 11

28 |29 |30 R — 14 15 16 17 18

iy zu 21 22 23 24 25

26 27 28 29 (30 31

6 Weekly Presentations
16:30-17:45 Room 9U10 E3

m RWTH Aachen University

Language:

Tn \'\5\'\

Webpage:

q Software Modelling and Verification Group

Pre-requisites:

Previous knowledge on
program logics and
semantics is ONLY advised.

http://moves.rwth-aachen.de/teaching/ss-15/vpp/



¥ Introduction to probabilistic programs

¥ The problem of probabilistic program verification

¥ Seminar content

# Summary



® Introduction to probabilistic programs




What is a probabilistic program?

“Ordinary” Program

Input/Output behaviour:

Input
ﬁ

pistriputiontsampiii g -

Probabilistic

Program

imperative (eg. Probabilistic C)
functional (eg. Church)
logical (eg. CHRISM)

randomly choose a process with which communicate
select a random prime in interval [1, n?]

flip a (fair/biased) coin;

.Q A
Output E
Distribution
ﬁ

Output



Probabilistic Programs — Examples

c1 = coin f1ip(0.5);
¢, = coin f1ip(0.5);
return (ci, &)

n .= 0;
repeat

n=n-+1;

¢ == coin_f1ip(0.5)
until (c=heads);
return n




Probabilistic Programs — Examples

: : Output
g = cotutlig (15 Distribution
¢, = coin_f1lip(0.5); —_—

return (¢, &)

n.=0;
repeat

n=n-+1;

¢ = coin f1lip(0.5)
until (c=heads);
return n




c; = coin f1ip(0.5);
¢ = coin_f1ip(0.5);
return (ci, &)

n=0;
repeat

n=n-+1;

c = coin_f1ip(0.5)
until (c=heads);
return n

Output
Distribution

—)

Output
Distribution

—

1/2 1/4

1/2k



Probabilistic Programs — Relevance

Applications in

Algorithms speed-up several domains

Relevance of
Randomization

Solution of problem where

o : : Probabilistic programs are simple
deterministic techniques fail

and intuitive to understand




Probabilistic Programs — Relevance

Applications in
several domains

Relevance of
Randomization




Probabilistic Programs — Application Domain

Probabilistic

Programs




Probabilistic Programs — Application Domain

Skill Ranking System

Probabilistic
Programs

float skillA, skillB,skillC;
float perfAl,perfBil,perfB2,
perfC2,perfA3,perfC3;
skillA = Gaussian(100,10);
skillB = Gaussian(100,10);
skillC = Gaussian(100,10);

// first game:A vs B, A won
perfAl = Gaussian(skillA,15);
perfBl = Gaussian(skillB,15);
observe (perfAl > perfB1);

// second game:B vs C, B won
perfB2 = Gaussian(skillB,15);
perfC2 = Gaussian(skillC,15);
observe (perfB2 > perfC2);

// third game:A vs C, A won
perfA3 = Gaussian(skillA,15);
perfC3 = Gaussian(skillC,15);
observe (perfA3 > perfC3);



Probabilistic Programs — Application Domain

Skill Ranking System

Predator— Prey
Population Model

Probabilistic

Programs

int goats, tigers;

double c1, c2, c3, curTime;
// initialize populations
goats = 100; tigers = 4;

// initialize reaction rates
cl=1; c2=25; c3 =1;
//initialize time

curTime = 0;

while (curTime < TIMELIMIT)

{
if (goats > 0 && tigers > 0)
{

double ratel, rate2, rate3,

rate;
ratel = cl * goats;
rate2 = c2 * goats * tigers;
rate3 = c3 * tigers;

rate = ratel + rate2 + rate3;

double dwellTime =
Exponential (rate) ;

int discrete =

Disc3(ratel/rate,rate2/rate);

curTime += dwellTime;

switch (discrete)

case 0: goats++; break;

case 1: goats--; tigers++;
break;

case 2: tigers--; break;

else if (goats > 0)
{
double rate;
rate = cl * goats;
double dwellTime =
Exponential (rate);
curTime += dwellTime;
goats++;
}
else if (tigers > 0)
{
double rate;
rate = c3 * tigers;
double dwellTime =
Exponential (rate);
curTime += dwellTime;
tigers--;
}
}//end while loop
return(goats,tigers);




V Probabilistic Programs — Application Domain

Skill Ranking System

Probabilistic
Programs

I

Predator—Prey
Population Model

DinPhil {(= algorithm for P, «)
WHILE TRUE DO{

(* thinking section =)

trying := true

WHILE trying DO{
choose s randomly and uniformly from {0, 1}
wait until TEST & UPDATE(fork-available [i — s], FALSE, FALSE)
IF TEST & UPDATE(fork-avallable[i — 5], FALSE, FALSE) THEN

trying := FALSE (* § = complement of s *)

ELSE fork-available[i — s] = TRUE

(* eating section *)

D | N | N g P h | | 0SO p h ers } fork-available[i — 1], fork-availableli] .= TRUE
}




Probabilistic Programs — Application Domain

=

Skill Ranking System

N

/

Probabilistic
Programs

Predator— Pré;f
Population Model

Mil

Dining Philosophers Primality Test

), 23,29, 31, 37, 41, 43, 47, 53, 5

le

AT

f—ﬂI;{abin

MILLERRABIN(n)

If n > 2 and n is even, return composite.

/* Factor n — 1 as 2°t where ¢ is odd. */
s+ 0
te—n-—1
while ¢ is even
ss+1
tt/2
end /* Done. n —1=2%. %/
Choose z € {1,2,..., n — 1} uniformly at random.
Compute each of the numbers z*, 2%, 2%, ..., 2%* = 2"! mod n.
If 2" ' # 1 (mod n), return composite.
fori=1,2,...,s
If z2* =1 (mod n) and %'t # +1 (mod n), return composite.
end /* Done checking for fake square roots. */

Return probably prime.




Probabilistic Programs — Application Domain

0
0 OMorp
= ronanp
DO
oD 0 0Q -
5 DTICO
), 23, 29, 31, 37, 41, 43, 47, 53, 5!
/‘ ?
T ~apb
) q F 0SSO0 » -




V Probabilistic Programs — Relevance

Algorithms speed-up

Relevance of
Randomization




Randomization allows speeding up algorithms

Quicksort:

QS(A) 2
if (|JA| < 1)then return(A);
i = [IAl/2];
A= {d € A|d < Alll}
A, ={ad e Ald > A[l};
return (QS(A<) ++ A[i] ++ QS(As))




Quicksort: Problem of Quicksort:

In the average case, it performs fairly well:

A . . . .
QS(A) = On a random input of size n, it requires on
if (|A| < 1)then return (A); average O(n log(n)) comparisons (which
i = [lAl/2]; matches information theory lower bound).
Ao ={a e A|lad < A[l};
A, ={a e Alad > All}; But in the worst case, it does not:
return (QS(A<) ++ A[i] ++ QS(A-)) There exist “ill-behaved” inputs of size n

which require O(n?) comparisons.

How to narrow the gap between the worst and average case performance?

11



Quicksort: Problem of Quicksort:

In the average case, it performs fairly well:

A . . . .
rQS(A) = On a random input of size n, it requires on
if (|JA| < 1)then return(A); average O(n log(n)) comparisons (which
> i:=rand[l...|A]]; <& matches information theory lower bound,).
A.={ad e Al|ld <A}
A ={a e Alad > All}; But in the worst case, it does not:
return (QS(A<) ++ A[i] ++ QS(A>)) There exist “ill-behaved” inputs of size n

which require O(n?) comparisons.

How to narrow the gap between the worst and average case performance?

Choose the pivot at random!

For any input, the expected number of
comparisons matches the average case.

No “ill-behaved” input.

11



Computing the cardinality of the union of sets:

STUSU...US,| = Z\5|—Z|5 NS+ > 1SN S NS — (mqgw

Principle
1<J 1<j<k

Problem: Incl-Excl Principle yields an expensive solution, the RHS has 2"-7 terms.

Solution based on randomization:

Random Sampling Technique

_ estimates
We can approximate some

properties of a set from a
randomly chosen subset.

)

12



Computing the cardinality |S; U S, U... U S,|

Solution based on randomization: sample an element = € 5 U5 U...US, and
use = |{i | x* € §;}| to estimate |5 US U...US,|.

m = ‘51|—|—---“|_‘5n|;

Draw a set S™ from Sy, ..., S, with probability Pr[S;] =
Draw an element x* from S* with uniform distribution:

|Si]| .

m !

m

i cov(x*);

return (r)

It can be shown that r is an unbiased estimator of |S; US U ... U S,|, ie

E[I’] = ‘51U52U...U5n‘

13



V Randomization allows speeding up algorithms

Another application of the Random Sampling technique

B Approximate the area of a circle




Another application of the Random Sampling technique

B Approximate the area of a circle

Sample random points in the enclosing square. The
fraction of points lying in the circle approximates its area.

: N
. S Area(®) ~ Area(M) - N

(The approximation improves as Ng grows larger.)

14



Another application of the Random Sampling technique

B Approximate the area of a circle

Sample random points in the enclosing square. The
fraction of points lying in the circle approximates its area.

Area(®) ~ Area(M) - x—
]

—

(The approximation improves as Ng grows larger.)

B Approximate a definite integral

g | T
0 a po 4

14



Testing against the null polynomial

Assume we have oracle access O(., ..., -) to a multivariate polynomial p in R[x, ..., x,].
Determine whether p is identically zero.

Solution based on randomization:

Exploit the fact if p # 0 and 3 = (a1, ..., an) is chosen at random, Pr[p(3) = 0] is small.

Theorem (Schwartz-Zippel): let S C R with |S| = k-deg(p). If each com-
ponent of 3 = (ay, ..., a,) is chosen independently and uniformly from S, then

Prip(a) = 0| p # 0] < Yk .

Alg. outputs “p % 0” sy p # 0
Let S C R with |S| = k-deg(p)

Draw aq, ..., a, independently and uniformly from S; Alg. outputs “p = 0” * p=0
if O(ay, ..., ap) = 0 then return ("p =07) ) ) .
else return ("p £ 07) Prip # 0 | output “p=0"] < ¢

18



Testing against the null polynomial

Assume we have oracle access O(., ..., -) to a multivariate polynomial p in R[x, ..., x,].
Determine whether p is identically zero.

Solution based on randomization:

Exploit the fact if p # 0 and 3 = (a1, ..., an) is chosen at random, Pr[p(3) = 0] is small.

Theorem (Schwartz-Zippel): let S C R with |S| = k-deg(p). If each com-
ponent of 3 = (ay, ..., a,) is chosen independently and uniformly from S, then

Prip(a) = 0| p # 0] < Yk .

Let S C R with |S| = k-deg(p) Alg. outputs “p # 0” =y p # 0

For i=1...mdo

Draw ay, ..., a, independently and uniformly from S; Alg. outputs “p = 0” * p=0
if O(ay, ..., a,)#0 then return (“p £ 0”)

return (“p = 0”) Pr[p # 0 | output “p=07] < (%)m

18



Underlying techniques

Abundance of Withesses

B Decision problem whose output depends on the presence (resp. absence) of a
witness to prove (resp. disprove) a property.

B Witnesses abound in a given search space.
# Given a witness, the property is “efficiently” verified.

Amplification by Independent Trials

B Used in conjunction with the “abundance of withesses” technique to reduce
the error probabillity.

# Given an algorithm with error probability €, run it n independent times to
reduce the error probability to £".

16



Underlying techniques

Abundance of Withesses

B Decision problem whose output depends on the presence (resp. absence) of a
witness to prove (resp. disprove) a property.

Witnesses abound in a given search space.
Given a witness, the property-is:“efficiently” verified.

Other example: primality testing [Rabin ’76].

Amplification by Independent Trials

B Used in conjunction with the “abundance of witnesses” technique to reduce
the error probabillity.

® Given an algorithm with error probability £, run it n independent times to
reduce the error probability to £".

16



Probabilistic Programs — Relevance

Relevance of
Randomization

Solution of problem where
deterministic techniques fail




The Dinning Philosopher Problem
Theorem (Lehmann & Rabin ’81) there exists no

A \0/,
fully distributed and symmetric deterministic

\‘ ‘/ algorithm for the dining philosopher problem.

Randomized Algorithm

|dea:
while (true) do Do not pick always the same fork first.
(* Thinking Time *) Flip a coin to choose.
trying = true ® If the second fork is not available,
while (trying) do release the first and flip again the coin.
= rand{left, right}
Wait until fork[s| is available and take it Algorithm is deadlock-free:

If fork|—s] is available At any time, if there is a hungry philosopher,

then take it and set trying to false with probability one some philosopher will
else drop fork|s] eventually eat. Algorithm can also be
(* Eating Time *) adapted to prevent starvation (ie the hungry

Drop both forks philosopher will eventually eat).



Leader Election

SSU
A
»
ot
Al ¢
»

P+
Pn /'( —~ . P2

Aim: to choose a leader node in a network. ._@; =
Network consists of n identical nodes P,...,Pn \
connected in a ring fashion. Pn-1 g@_o g Ps
Transmission of messages is allowed between \ /
consecutive nodes in the ring. . ]

s s — |
At the end of the process all nodes must agree on \g 7 Pq
the election of the leader. Ps

Theorem (Angluin ’80) there exists no deterministic algorithm for carrying out the
election in a ring of identical processes.

Randomized Algorithm

|dea:
repe.at | Each nodes chooses a random name from {1,
s = empty list; ...,K} and propagates it around the ring.
LA rand{1,..., K}; B At the end of the propagation each process
Fori=1...ndo has a list of the names of all the nodes.
s = s ++ [name]; B If there is a name that belongs to only one
send(name) to next node; node, then this is the leader (in case of several,
receive(name) from previous node choose eg the largest)
until (at least one name in s is unique) B If there is no unique name, repeat the process.

return max{n € s | n occus only once in s}

19



Underlying technique

Symmetry Breaking in Distributed Systems

® For many problems on distributed systems, deterministic solutions do not
exists when objects are to be treaded identically.

® Using randomization to choose among identical objects may help solving the
symmetry problem.

20



Advantages

Reduction of time/space complexity

¥ Reduction of communication complexity in the distributed setting
Allows tackling problems that have no deterministic solution

B Probabilistic programs are simple and easy to understand

Wide range of application domains

21



Advantages

¥ Reduction of time/space complexity

Reduction of communication complexity in the distributed setting
@ Allows tackling problems that have no deterministic solution
Probabilistic programs are simple and easy to understand

Wide range of application domains

Disadvantages

Absolute correctness is sometimes sacrificed: probabilistic programs are
“correct with probability 1—¢ “

Quicksort, dining philosopher, leader election e=0

Definite integral, testing against null polynomial e >0

21



Advantages

Reduction of time/space complexity

¥ Reduction of communication complexity in the distributed setting
Allows tackling problems that have no deterministic solution

B Probabilistic programs are simple and easy to understand

Wide range of application domains

Disadvantages

Absolute correctness is sometimes sacrificed: probabilistic programs are
“correct with probability 1—¢ “

Quicksort, dining philosopher, leader election e=0

Definite integral, testing against null polynomial e >0

21



Deterministic Algorithm

ALWAYS

NEVER

Correctness

LONG

SHORT

Running Time

Probabilistic Algorithm

ALWAYS LONG

Faster, but
“less”’correct N SHORT

Correctness Running Time

Is the probabi-
listic algorithm .,
still reliable? ~ J"

22



Deterministic Algorithm

ALWAYS

NEVER

Correctness

LONG

SHORT

Running Time

Probabilistic Algorithm

ALWAYS LONG

Faster, but
“less”’correct N SHORT

7 Correctness Running Time
Is the probabi- )
@

listic algorithm .,
still reliable? _L

Yes, absolutely!

22



Verifying Data Consistency

® Goal: R and R must communicate to verify
whether x=y (x,y € {0,1}").

communication

® Requirement: minimize the # of bits exchanged. Ri Ru

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

|dea: use random fingerprints of x and y.

Routine of Ry £
p = rand{i € [2, n*] | prime(i)};
s := x mod p;
send(p, s) to Ryi;

Routine of Ry =
receive(p,s) from Ry;
t := y mod p;
if (s=t) then return (“x=y")
else return (“x#y”)

7S - ubits(p) + #bits(s) < 2logy(n?)

exchanged

Prot. outputs “x#£y” = x#y
In(n?)
n

Pr[x # y | output “x=y”] <

23



Verifying Data Consistency

® Goal: Ry and R must communicate to verify = communication o
® Requirement: minimize the # of bits exchanged. Ri Ru

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

|dea: use random fingerprints of x and y. exﬁlgg;e = #bits(p) + F#bits(s) < 2log,(n?)
Routine of R; = Prot. outputs “x£y” i x#y
._ : 2 (L 2
p = rand{i € [2, n“] | prime(i)}; Prix  y | output “x=y”] < In(n?)
s = x mod p; n

send(p, S) to Ryg;

# bits exch.

Routine of Ry =

n=1010 133 4.60 x 1009

receive(p,s) from Ry; X
t .=y mod p; n=1020 266 9.21 x 10-19
if (s=t) then return (“x=y”) n=1030 398 1.38 x 1028
else return (“x#y”) n=1040 532 1.84 x 10-38

n=1050 664 2.30 x 1048

23



® The problem of probabilistic program verification




Pro

Input/Output behaviour of probabilistic programs:

Output
Input Probabilistic Distribution
ﬁ ﬁ

Program

Verification of probabilistic programs:

Probabilistic

Program

A

Prob

“Probabilistic” Assertion

about the Program Output

® Property holds with a given probability
Prerror] < 0.02

B Assertion about the expected (ie
average) value of a variable

E[r] <10

25



Examples of Probabilistic Assertions

B Cardinality of sets union

m:=|5|+...+|S,|;

Draw a set $* from S;,..., S, with probability Pr[S;] = ==,
Draw an element x* from S* with uniform distribution:

m

T eou(

return (r)

¥ Leader Election

repeat
s = empty list;
name = rand{1,..., K}
For/i=1...ndo
s == s ++ [name];
send(name) to next node;
receive(name) from previous node
until (at least one name in s is unique)
return max{n € s | n occus only once in s}

|Si]

Pr[termination] = 1 ?

Elr] =|S55US U...US,|

2

/
;Y

26



Let p be probability that after the random choices of the node names, at least one
name is unique. We know that 0 < p < 1.

Pr[term]| = 1 — Pr[non—term)]

_ 1 _ py | in all rounds, there}
. IS no unique name

=1— lim (1—p)”

n— o0

= ||

27



Let p be probability that after the random choices of the node names, at least one
name is unique. We know that 0 < p < 1.

Pr[term]| = 1 — Pr[non—term)]

_ 1 _ py |in all rounds, there}
B IS no unique name

=1 Jim (1)
= ||

Intricacy

Probabilistic programs may
terminate with probability 1, and
still admit diverging executions.

27



Let p be probability that after the random choices of the node names, at least one
name is unique. We know that 0 < p < 1.

Pr[term]| = 1 — Pr[non—term)]

_ 1 _ py |in all rounds, there}
B IS no unique name

=1— lim (1—p)”

n— oo

= ||

Intricacy

Probabilistic programs may
terminate with probability 1, and
still admit diverging executions.

27



Let p be probability that after the random choices of the node names, at least one
name is unique. We know that 0 < p < 1.

Pr[term]| = 1 — Pr[non—term)]

_ 1 _ py |in all rounds, there}
B IS no unique name

=1— lim (1—p)”

n— o0
=1
Intricacy
Probabilistic programs may
terminate with probability 1, and J
still admit diverging executions. @ 'S
Another example of AST:

repeat
b = flip_coin();
until (b = heads)

27



How to verify probabilistic assertions?

It is possible to extend standard verification techniques of sequential programs:

Hoare logic

Assertions of the form {P} ¢ {Q}, where P and Q
are predicates over program states

S s’
{P} c{Q} is valid iff P(s) = Q(s')
Example: {x > 0} x = x+2 {x >0}

Deductive system (ie proof rules) to derive valid
assertions (one rule per language construction)

{P}skip{P}

{P[z < e]}x := e{P}

{P}si{Q}  {Q}so{R}
{P}Sl; 82{R}

Proof objects are derivations (trees)

Weakest precondition calculus

Given in terms of predicate transformer

wp[c]: P(X) — P(X)

wp[c](@Q = set of initial states that lead
P ] to a final state satisfying Q

Example: wp[x = x+2](x > 0) = x > -2

Connection to Hoare logic

{P} c{Q} iff P — wp[c](Q)

Transformerwp|c| is defined by induction on

the structure of c:
wp[skip|(Q) = Q

wp[x = e](Q) = Q[x/E]
wple; ©](Q) = (wp[ai] o wple])(Q)

28



® Seminar content




Different extension of Hoare logic and weakest precondition calculus for
probabilistic programs.

¥ Probabilistic predicate transformers B Relational Hoare logics [Barthe ’09,’12]
[Mclver & Morgan ’96]

Relates the executions of a program from

Reward function f: ¥ — R over the set of two different initial states.
final states. Pre- and post-conditions are relations
wp|c](f) = Expected reward of c wrt f (rather than predicates) over program
states.
{=1} ¢ {=1}

B Hartog’s Hoare logic [Hartog '02]

{true} ¢ {Vi+ (i<0)V Pr[x=i] = (12)'}

30



® Summary




Summary

Probabilistic programs are simple
and intuitive to understand

“Ordinary” Program Applications in

several domains
Relevance of

Randomization

Algorithms speed-up

Solution of problem where
deterministic techniques fail




