

Semantics and Verification of Software

Summer Semester 2015

Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

The Axiomatic Approach

The Axiomatic Approach I

Example 9.1

• Let $c \in Cmd$ be given by

$$s := 0$$
; $n := 1$; while $\neg(n>N)$ do $s := s+n$; $n := n+1$ end

• How to show that, after termination of *c*,

$$\sigma(\mathbf{s}) = \sum_{k=1}^{\sigma(\mathbb{N})} k ?$$

- "Running" c according to the operational semantics in insufficient: every change of $\sigma(\mathbb{N})$ requires a new proof
- Wanted: a more abstract, "symbolic" way of reasoning

The Axiomatic Approach

The Axiomatic Approach II

Example 9.1 (continued)

Obviously *c* satisfies the following assertions (after execution of the respective statement):

```
\begin{array}{l} s := 0; \\ \{s = 0\} \\ n := 1; \\ \{s = 0 \land n = 1\} \\ \text{while } \neg (n > \mathbb{N}) \text{ do } s := s + n; \ n := n + 1 \text{ end} \\ \{s = \sum_{k=1}^{\mathbb{N}} k \land n > \mathbb{N}\} \end{array}
```

where, e.g., "s = 0" means " $\sigma(s) = 0$ in the current state $\sigma \in \Sigma$ "

The Axiomatic Approach

The Axiomatic Approach III

How to prove the validity of assertions?

- Assertions following assignments are evident ("s = 0")
- Also, "n > N" follows directly from the loop's execution condition
- But how to obtain the final value of s?
- Answer: after every loop iteration, the invariant $s = \sum_{k=1}^{n-1} k$ is satisfied
- Corresponding proof system employs partial correctness properties of the form $\{A\}$ c $\{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of partial correctness property

```
\{A\} c \{B\} is valid iff for all states \sigma \in \Sigma which satisfy A: if the execution of c in \sigma terminates in \sigma' \in \Sigma, then \sigma' satisfies B.
```

- "Partial" means that nothing is said about c if it fails to terminate
- In particular, {true} while true do skip end {false} is a valid property

The Assertion Language

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables

- to memorize previous values of program variables
- to formulate more involved state properties

Syntactic categories:

Category	Domain	Meta variable(s)
Logical variables	LVar	i
Arithmetic expressions with logical variables	LExp	a
Assertions	Assn	A, B, C

The Assertion Language

Syntax of Assertion Language II

Definition 9.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

$$a := z \mid x \mid i \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in LExp$$

 $A := t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \land A_2 \mid A_1 \lor A_2 \mid \forall i.A \in Assn$

- Thus: $AExp \subseteq LExp$, $BExp \subseteq Assn$
- The following (and other) abbreviations will be employed:

$$A_1 \Rightarrow A_2 := \neg A_1 \lor A_2$$

 $\exists i.A := \neg (\forall i. \neg A)$
 $a_1 \ge a_2 := a_1 > a_2 \lor a_1 = a_2$
 \vdots

Semantics of *LExp*

The semantics now additionally depends on values of logical variables:

Definition 9.3 (Semantics of *LExp*)

An interpretation is an element of the set $Int := \{I \mid I : LVar \to \mathbb{Z}\}$. The value of an arithmetic expressions with logical variables is given by the functional

$$\mathfrak{L}[\![.]\!]: \mathit{LExp} o (\mathit{Int} o (\Sigma o \mathbb{Z}))$$

where
$$\mathfrak{L}[\![z]\!] I\sigma := z$$
 $\mathfrak{L}[\![a_1 + a_2]\!] I\sigma := \mathfrak{L}[\![a_1]\!] I\sigma + \mathfrak{L}[\![a_2]\!] I\sigma$ $\mathfrak{L}[\![x]\!] I\sigma := \sigma(x)$ $\mathfrak{L}[\![a_1 - a_2]\!] I\sigma := \mathfrak{L}[\![a_1]\!] I\sigma - \mathfrak{L}[\![a_2]\!] I\sigma$ $\mathfrak{L}[\![i]\!] I\sigma := I(i)$ $\mathfrak{L}[\![a_1 * a_2]\!] I\sigma := \mathfrak{L}[\![a_1]\!] I\sigma \cdot \mathfrak{L}[\![a_2]\!] I\sigma$

Definition 6.1 (denotational semantics of arithmetic expressions) implies:

Corollary 9.4

For every $a \in AExp$ (without logical variables), $I \in Int$, and $\sigma \in \Sigma$:

$$\mathfrak{L}[\![a]\!]I\sigma = \mathfrak{A}[\![a]\!]\sigma.$$

Semantics of Assertions I

Formalized by a satisfaction relation of the form

$$\sigma \models A$$

(where $\sigma \in \Sigma$ and $A \in Assn$)

Non-terminating computations captured by undefined state ⊥:

$$\Sigma_{\perp} := \Sigma \cup \{\perp\}$$

Modification of interpretations (in analogy to program states):

$$I[i \mapsto z](j) := \begin{cases} z & \text{if } j = i \\ I(j) & \text{otherwise} \end{cases}$$

Semantics of Assertions II

Reminder: $A := t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \land A_2 \mid A_1 \lor A_2 \mid \forall i.A \in Assn$

Definition 9.5 (Semantics of assertions)

Let $A \in Assn$, $\sigma \in \Sigma_{\perp}$, and $I \in Int$. The relation " σ satisfies A in I" (notation: $\sigma \models^{I} A$) is inductively defined by:

$$\sigma \models^{l} \text{true}$$

$$\sigma \models^{l} a_{1} = a_{2} \quad \text{if } \mathfrak{L}\llbracket a_{1} \rrbracket I \sigma = \mathfrak{L}\llbracket a_{2} \rrbracket I \sigma$$

$$\sigma \models^{l} a_{1} > a_{2} \quad \text{if } \mathfrak{L}\llbracket a_{1} \rrbracket I \sigma > \mathfrak{L}\llbracket a_{2} \rrbracket I \sigma$$

$$\sigma \models^{l} \neg A \quad \text{if not } \sigma \models^{l} A$$

$$\sigma \models^{l} A_{1} \wedge A_{2} \quad \text{if } \sigma \models^{l} A_{1} \text{ and } \sigma \models^{l} A_{2}$$

$$\sigma \models^{l} A_{1} \vee A_{2} \quad \text{if } \sigma \models^{l} A_{1} \text{ or } \sigma \models^{l} A_{2}$$

$$\sigma \models^{l} \forall i.A \quad \text{if } \sigma \models^{l[i \mapsto z]} A \text{ for every } z \in \mathbb{Z}$$

$$\perp \models^{l} A$$

Furthermore σ satisfies A ($\sigma \models A$) if $\sigma \models^{I} A$ for every interpretation $I \in Int$, and A is called valid ($\models A$) if $\sigma \models A$ for every state $\sigma \in \Sigma$.

Semantics of Assertions III

Example 9.6

The following assertion expresses that, in the current state $\sigma \in \Sigma$, $\sigma(y)$ is the greatest divisor of $\sigma(x)$:

$$(\exists i.i > 1 \land i*y = x) \land \forall j. \forall k. (j > 1 \land j*k = x \Rightarrow k \leq y)$$

In analogy to Corollary 9.4, Definition 6.2 (denotational semantics of Boolean expressions) yields:

Corollary 9.7

For every $b \in BExp$ (without logical variables), $I \in Int$, and $\sigma \in \Sigma$:

$$\sigma \models^{\prime} b \iff \mathfrak{B}[\![b]\!] \sigma = \text{true}.$$

Semantics of Assertions IV

Definition 9.8 (Extension)

Let $A \in Assn$ and $I \in Int$. The extension of A with respect to I is given by

$$A' := \{ \sigma \in \Sigma_{\perp} \mid \sigma \models' A \}.$$

Note that, for every $A \in Assn$ and $I \in Int$, $\bot \in A^{I}$.

Example 9.9

For
$$A := (\exists i.i*i = x)$$
 and every $I \in Int$,

$$A' = \{\bot\} \cup \{\sigma \in \Sigma \mid \sigma(x) \in \{0, 1, 4, 9, \ldots\}\}$$

Partial Correctness Properties

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)

Let $A, B \in Assn$ and $c \in Cmd$.

- An expression of the form $\{A\}$ c $\{B\}$ is called a partial correctness property with precondition A and postcondition B.
- Given $\sigma \in \Sigma_{\perp}$ and $I \in Int$, we let

$$\sigma \models^{I} \{A\} c \{B\}$$

if $\sigma \models^{I} A$ implies $\mathfrak{C}[\![c]\!] \sigma \models^{I} B$ (or equivalently: $\sigma \in A^{I} \Rightarrow \mathfrak{C}[\![c]\!] \sigma \in B^{I}$).

- $\{A\}$ c $\{B\}$ is called valid in I (notation: $\models^I \{A\}$ c $\{B\}$) if $\sigma \models^I \{A\}$ c $\{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[\![c]\!]A^I \subseteq B^I$).
- $\{A\}$ c $\{B\}$ is called valid (notation: $\models \{A\}$ c $\{B\}$) if $\models^I \{A\}$ c $\{B\}$ for every $I \in Int$.

A Valid Partial Correctness Property

A Valid Partial Correctness Property

Example 9.11

• Let $x \in Var$ and $i \in LVar$. We have to show:

$$\models \{i \leq x\} x := x+1 \{i < x\}$$

According to Definition 9.10, this is equivalent to

$$\sigma \models^{I} \{i \leq x\} x := x+1 \{i < x\}$$

for every $\sigma \in \Sigma_{\perp}$ and $I \in Int$

• For $\sigma = \bot$ this is trivial. So let $\sigma \in \Sigma$:

$$\sigma \models^{I} (i \leq x)$$

$$\Rightarrow \mathcal{L}[\![i]\!] I \sigma \leq \mathcal{L}[\![x]\!] I \sigma \qquad \text{(Definition 9.5)}$$

$$\Rightarrow I(i) \leq \sigma(x) \qquad \text{(Definition 9.3)}$$

$$\Rightarrow I(i) < \sigma(x) + 1$$

$$= (\mathcal{C}[\![x := x+1]\!] \sigma)(x)$$

$$\Rightarrow \mathcal{C}[\![x := x+1]\!] \sigma \models^{I} (i < x)$$

$$\Rightarrow \text{claim}$$

Proof Rules for Partial Correctness

Hoare Logic I

Goal: syntactic derivation of valid partial correctness properties. Here $A[x \mapsto a]$ denotes the syntactic replacement of every occurrence of x by a in A.

Tony Hoare (* 1934)

Definition 9.12 (Hoare Logic)

The Hoare rules are given by

A partial correctness property is provable (notation: $\vdash \{A\} \ c \ \{B\}$) if it is derivable by the Hoare rules. In (while), A is called a (loop) invariant.

Proof Rules for Partial Correctness

Hoare Logic II

Example 9.13 (Factorial program)

Proof of $\{A\}$ y:=1; c $\{B\}$ where

$$c := (while \neg(x=1) do y := y*x; x := x-1 end)$$

 $A := (x > 0 \land x = i)$
 $B := (y = i!)$

(on the board)

Structure of the proof:

Proof Rules for Partial Correctness

Hoare Logic III

Example 9.13 (continued)

Here the respective propositions are given by (where $C := (x > 0 \land y * x! = i!)$):

- 1. {A} y := 1; c {B} 2. {A} y := 1 {C} 3. {C} c {B}
- $4. \models (A \Rightarrow C[y \mapsto 1])$
- 5. $\{C[y \mapsto 1]\} y := 1 \{C\}$
- 6. \models ($C \Rightarrow C$)
- 7. $\models (C \Rightarrow C)$
- 8. $\{C\}$ $c\{\neg(\neg(x = 1)) \land C\}$
- 9. $\models (\neg(\neg(x = 1)) \land C \Rightarrow B)$
- 10. $\{\neg(x = 1) \land C\}$ y := y*x; x := x-1 $\{C\}$
- 11. $\models (\neg(x = 1) \land C \Rightarrow C[x \mapsto x-1, y \mapsto y*x])$
- 12. $\{C[x \mapsto x-1, y \mapsto y*x]\}\ y := y*x; x := x-1 \{C\}$
- 13. \models ($C \Rightarrow C$)
- **14.** $\{C[x \mapsto x-1, y \mapsto y*x]\}\ y := y*x \{C[x \mapsto x-1]\}$
- 15. $\{C[x \mapsto x-1]\} x := x-1 \{C\}$

