
Semantics and Verification of Software
Summer Semester 2015

Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

The Axiomatic Approach

Outline of Lecture 9

The Axiomatic Approach

The Assertion Language

Semantics of Assertions

Partial Correctness Properties

A Valid Partial Correctness Property

Proof Rules for Partial Correctness

2 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach I

Example 9.1

• Let c ∈ Cmd be given by

s := 0; n := 1; while ¬(n>N) do s := s+n; n := n+1 end

• How to show that, after termination of c,

σ(s) =

σ(N)∑
k=1

k ?

• “Running” c according to the operational semantics in insufficient: every change of σ(N)
requires a new proof
• Wanted: a more abstract, “symbolic” way of reasoning

3 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach I

Example 9.1

• Let c ∈ Cmd be given by

s := 0; n := 1; while ¬(n>N) do s := s+n; n := n+1 end

• How to show that, after termination of c,

σ(s) =

σ(N)∑
k=1

k ?

• “Running” c according to the operational semantics in insufficient: every change of σ(N)
requires a new proof
• Wanted: a more abstract, “symbolic” way of reasoning

3 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach I

Example 9.1

• Let c ∈ Cmd be given by

s := 0; n := 1; while ¬(n>N) do s := s+n; n := n+1 end

• How to show that, after termination of c,

σ(s) =

σ(N)∑
k=1

k ?

• “Running” c according to the operational semantics in insufficient: every change of σ(N)
requires a new proof

• Wanted: a more abstract, “symbolic” way of reasoning

3 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach I

Example 9.1

• Let c ∈ Cmd be given by

s := 0; n := 1; while ¬(n>N) do s := s+n; n := n+1 end

• How to show that, after termination of c,

σ(s) =

σ(N)∑
k=1

k ?

• “Running” c according to the operational semantics in insufficient: every change of σ(N)
requires a new proof
• Wanted: a more abstract, “symbolic” way of reasoning

3 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach II

Example 9.1 (continued)

Obviously c satisfies the following assertions (after execution of the respective
statement):

s := 0;
{s = 0}
n := 1;
{s = 0 ∧ n = 1}
while ¬(n>N) do s := s+n; n := n+1 end

{s =
∑N

k=1 k ∧ n > N}
where, e.g., “s = 0” means “σ(s) = 0 in the current state σ ∈ Σ”

4 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach III

How to prove the validity of assertions?
• Assertions following assignments are evident (“s = 0”)

• Also, “n > N” follows directly from the loop’s execution condition
• But how to obtain the final value of s?
• Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is satisfied

• Corresponding proof system employs partial correctness properties of the form {A} c {B}
with assertions A,B and c ∈ Cmd
• Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

• “Partial” means that nothing is said about c if it fails to terminate
• In particular, {true} while true do skip end {false} is a valid property

5 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach III

How to prove the validity of assertions?
• Assertions following assignments are evident (“s = 0”)
• Also, “n > N” follows directly from the loop’s execution condition

• But how to obtain the final value of s?
• Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is satisfied

• Corresponding proof system employs partial correctness properties of the form {A} c {B}
with assertions A,B and c ∈ Cmd
• Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

• “Partial” means that nothing is said about c if it fails to terminate
• In particular, {true} while true do skip end {false} is a valid property

5 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach III

How to prove the validity of assertions?
• Assertions following assignments are evident (“s = 0”)
• Also, “n > N” follows directly from the loop’s execution condition
• But how to obtain the final value of s?

• Answer: after every loop iteration, the invariant s =
∑n−1

k=1 k is satisfied
• Corresponding proof system employs partial correctness properties of the form {A} c {B}

with assertions A,B and c ∈ Cmd
• Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

• “Partial” means that nothing is said about c if it fails to terminate
• In particular, {true} while true do skip end {false} is a valid property

5 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach III

How to prove the validity of assertions?
• Assertions following assignments are evident (“s = 0”)
• Also, “n > N” follows directly from the loop’s execution condition
• But how to obtain the final value of s?
• Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is satisfied

• Corresponding proof system employs partial correctness properties of the form {A} c {B}
with assertions A,B and c ∈ Cmd
• Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

• “Partial” means that nothing is said about c if it fails to terminate
• In particular, {true} while true do skip end {false} is a valid property

5 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach III

How to prove the validity of assertions?
• Assertions following assignments are evident (“s = 0”)
• Also, “n > N” follows directly from the loop’s execution condition
• But how to obtain the final value of s?
• Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is satisfied

• Corresponding proof system employs partial correctness properties of the form {A} c {B}
with assertions A,B and c ∈ Cmd

• Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

• “Partial” means that nothing is said about c if it fails to terminate
• In particular, {true} while true do skip end {false} is a valid property

5 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach III

How to prove the validity of assertions?
• Assertions following assignments are evident (“s = 0”)
• Also, “n > N” follows directly from the loop’s execution condition
• But how to obtain the final value of s?
• Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is satisfied

• Corresponding proof system employs partial correctness properties of the form {A} c {B}
with assertions A,B and c ∈ Cmd
• Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

• “Partial” means that nothing is said about c if it fails to terminate
• In particular, {true} while true do skip end {false} is a valid property

5 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach III

How to prove the validity of assertions?
• Assertions following assignments are evident (“s = 0”)
• Also, “n > N” follows directly from the loop’s execution condition
• But how to obtain the final value of s?
• Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is satisfied

• Corresponding proof system employs partial correctness properties of the form {A} c {B}
with assertions A,B and c ∈ Cmd
• Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

• “Partial” means that nothing is said about c if it fails to terminate

• In particular, {true} while true do skip end {false} is a valid property

5 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Axiomatic Approach

The Axiomatic Approach III

How to prove the validity of assertions?
• Assertions following assignments are evident (“s = 0”)
• Also, “n > N” follows directly from the loop’s execution condition
• But how to obtain the final value of s?
• Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is satisfied

• Corresponding proof system employs partial correctness properties of the form {A} c {B}
with assertions A,B and c ∈ Cmd
• Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

• “Partial” means that nothing is said about c if it fails to terminate
• In particular, {true} while true do skip end {false} is a valid property

5 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Assertion Language

Outline of Lecture 9

The Axiomatic Approach

The Assertion Language

Semantics of Assertions

Partial Correctness Properties

A Valid Partial Correctness Property

Proof Rules for Partial Correctness

6 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Assertion Language

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
• to memorize previous values of program variables
• to formulate more involved state properties

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar i
Arithmetic expressions with logical variables LExp a
Assertions Assn A,B,C

7 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Assertion Language

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
• to memorize previous values of program variables
• to formulate more involved state properties

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar i
Arithmetic expressions with logical variables LExp a
Assertions Assn A,B,C

7 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Assertion Language

Syntax of Assertion Language II

Definition 9.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

• Thus: AExp (LExp, BExp (Assn
• The following (and other) abbreviations will be employed:

A1 ⇒ A2 := ¬A1 ∨ A2
∃i.A := ¬(∀i.¬A)

a1 ≥ a2 := a1>a2 ∨ a1=a2
...

8 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

The Assertion Language

Syntax of Assertion Language II

Definition 9.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

• Thus: AExp (LExp, BExp (Assn
• The following (and other) abbreviations will be employed:

A1 ⇒ A2 := ¬A1 ∨ A2
∃i.A := ¬(∀i.¬A)

a1 ≥ a2 := a1>a2 ∨ a1=a2
...

8 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Semantics of Assertions

Outline of Lecture 9

The Axiomatic Approach

The Assertion Language

Semantics of Assertions

Partial Correctness Properties

A Valid Partial Correctness Property

Proof Rules for Partial Correctness

9 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Semantics of Assertions

Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 9.3 (Semantics of LExp)

An interpretation is an element of the set Int := {I | I : LVar → Z}. The value of an
arithmetic expressions with logical variables is given by the functional

LJ.K : LExp → (Int → (Σ→ Z))

where LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ
LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ
LJiKIσ := I(i) LJa1*a2KIσ := LJa1KIσ · LJa2KIσ

Definition 6.1 (denotational semantics of arithmetic expressions) implies:

Corollary 9.4

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:
LJaKIσ = AJaKσ.

10 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Semantics of Assertions

Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 9.3 (Semantics of LExp)

An interpretation is an element of the set Int := {I | I : LVar → Z}. The value of an
arithmetic expressions with logical variables is given by the functional

LJ.K : LExp → (Int → (Σ→ Z))

where LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ
LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ
LJiKIσ := I(i) LJa1*a2KIσ := LJa1KIσ · LJa2KIσ

Definition 6.1 (denotational semantics of arithmetic expressions) implies:

Corollary 9.4

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:
LJaKIσ = AJaKσ.

10 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Semantics of Assertions

Semantics of Assertions I

• Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

• Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

• Modification of interpretations (in analogy to program states):

I[i 7→ z](j) :=

{
z if j = i
I(j) otherwise

11 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Semantics of Assertions

Semantics of Assertions I

• Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)
• Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

• Modification of interpretations (in analogy to program states):

I[i 7→ z](j) :=

{
z if j = i
I(j) otherwise

11 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Semantics of Assertions

Semantics of Assertions I

• Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)
• Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

• Modification of interpretations (in analogy to program states):

I[i 7→ z](j) :=

{
z if j = i
I(j) otherwise

11 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Semantics of Assertions

Semantics of Assertions II

Reminder: A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Definition 9.5 (Semantics of assertions)

Let A ∈ Assn, σ ∈ Σ⊥, and I ∈ Int . The relation “σ satisfies A in I” (notation:
σ |=I A) is inductively defined by:

σ |=I true
σ |=I a1=a2 if LJa1KIσ = LJa2KIσ
σ |=I a1>a2 if LJa1KIσ > LJa2KIσ
σ |=I ¬A if not σ |=I A
σ |=I A1 ∧ A2 if σ |=I A1 and σ |=I A2

σ |=I A1 ∨ A2 if σ |=I A1 or σ |=I A2

σ |=I ∀i.A if σ |=I[i 7→z] A for every z ∈ Z
⊥ |=I A

Furthermore σ satisfies A (σ |= A) if σ |=I A for every interpretation I ∈ Int , and A is
called valid (|= A) if σ |= A for every state σ ∈ Σ.

12 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Semantics of Assertions

Semantics of Assertions III

Example 9.6

The following assertion expresses that, in the current state σ ∈ Σ, σ(y) is the
greatest divisor of σ(x):

(∃i.i > 1 ∧ i*y = x) ∧ ∀j.∀k .(j > 1 ∧ j*k = x ⇒ k ≤ y)

In analogy to Corollary 9.4, Definition 6.2 (denotational semantics of Boolean
expressions) yields:

Corollary 9.7

For every b ∈ BExp (without logical variables), I ∈ Int, and σ ∈ Σ:

σ |=I b ⇐⇒ BJbKσ = true.

13 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Semantics of Assertions

Semantics of Assertions III

Example 9.6

The following assertion expresses that, in the current state σ ∈ Σ, σ(y) is the
greatest divisor of σ(x):

(∃i.i > 1 ∧ i*y = x) ∧ ∀j.∀k .(j > 1 ∧ j*k = x ⇒ k ≤ y)

In analogy to Corollary 9.4, Definition 6.2 (denotational semantics of Boolean
expressions) yields:

Corollary 9.7

For every b ∈ BExp (without logical variables), I ∈ Int, and σ ∈ Σ:

σ |=I b ⇐⇒ BJbKσ = true.

13 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Semantics of Assertions

Semantics of Assertions IV

Definition 9.8 (Extension)

Let A ∈ Assn and I ∈ Int . The extension of A with respect to I is given by

AI := {σ ∈ Σ⊥ | σ |=I A}.

Note that, for every A ∈ Assn and I ∈ Int , ⊥ ∈ AI.

Example 9.9

For A := (∃i.i*i = x) and every I ∈ Int ,

AI = {⊥} ∪ {σ ∈ Σ | σ(x) ∈ {0, 1, 4, 9, . . .}}

14 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Semantics of Assertions

Semantics of Assertions IV

Definition 9.8 (Extension)

Let A ∈ Assn and I ∈ Int . The extension of A with respect to I is given by

AI := {σ ∈ Σ⊥ | σ |=I A}.

Note that, for every A ∈ Assn and I ∈ Int , ⊥ ∈ AI.

Example 9.9

For A := (∃i.i*i = x) and every I ∈ Int ,

AI = {⊥} ∪ {σ ∈ Σ | σ(x) ∈ {0, 1, 4, 9, . . .}}

14 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Partial Correctness Properties

Outline of Lecture 9

The Axiomatic Approach

The Assertion Language

Semantics of Assertions

Partial Correctness Properties

A Valid Partial Correctness Property

Proof Rules for Partial Correctness

15 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Partial Correctness Properties

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .
• An expression of the form {A} c {B} is called a partial correctness property with

precondition A and postcondition B.

• Given σ ∈ Σ⊥ and I ∈ Int , we let
σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B (or equivalently: σ ∈ AI ⇒ CJcKσ ∈ BI).
• {A} c {B} is called valid in I (notation: |=I {A} c {B}) if σ |=I {A} c {B} for every σ ∈ Σ⊥

(or equivalently: CJcKAI ⊆ BI).
• {A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B} for every I ∈ Int .

16 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Partial Correctness Properties

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .
• An expression of the form {A} c {B} is called a partial correctness property with

precondition A and postcondition B.
• Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}
if σ |=I A implies CJcKσ |=I B (or equivalently: σ ∈ AI ⇒ CJcKσ ∈ BI).

• {A} c {B} is called valid in I (notation: |=I {A} c {B}) if σ |=I {A} c {B} for every σ ∈ Σ⊥
(or equivalently: CJcKAI ⊆ BI).
• {A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B} for every I ∈ Int .

16 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Partial Correctness Properties

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .
• An expression of the form {A} c {B} is called a partial correctness property with

precondition A and postcondition B.
• Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}
if σ |=I A implies CJcKσ |=I B (or equivalently: σ ∈ AI ⇒ CJcKσ ∈ BI).
• {A} c {B} is called valid in I (notation: |=I {A} c {B}) if σ |=I {A} c {B} for every σ ∈ Σ⊥

(or equivalently: CJcKAI ⊆ BI).

• {A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B} for every I ∈ Int .

16 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Partial Correctness Properties

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .
• An expression of the form {A} c {B} is called a partial correctness property with

precondition A and postcondition B.
• Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}
if σ |=I A implies CJcKσ |=I B (or equivalently: σ ∈ AI ⇒ CJcKσ ∈ BI).
• {A} c {B} is called valid in I (notation: |=I {A} c {B}) if σ |=I {A} c {B} for every σ ∈ Σ⊥

(or equivalently: CJcKAI ⊆ BI).
• {A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B} for every I ∈ Int .

16 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

A Valid Partial Correctness Property

Outline of Lecture 9

The Axiomatic Approach

The Assertion Language

Semantics of Assertions

Partial Correctness Properties

A Valid Partial Correctness Property

Proof Rules for Partial Correctness

17 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

A Valid Partial Correctness Property

A Valid Partial Correctness Property

Example 9.11

• Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

• According to Definition 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int
• For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Definition 9.5)
⇒ I(i) ≤ σ(x) (Definition 9.3)
⇒ I(i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

18 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

A Valid Partial Correctness Property

A Valid Partial Correctness Property

Example 9.11

• Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

• According to Definition 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int

• For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Definition 9.5)
⇒ I(i) ≤ σ(x) (Definition 9.3)
⇒ I(i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

18 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

A Valid Partial Correctness Property

A Valid Partial Correctness Property

Example 9.11

• Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

• According to Definition 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int
• For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)

⇒ LJiKIσ ≤ LJxKIσ (Definition 9.5)
⇒ I(i) ≤ σ(x) (Definition 9.3)
⇒ I(i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

18 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

A Valid Partial Correctness Property

A Valid Partial Correctness Property

Example 9.11

• Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

• According to Definition 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int
• For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Definition 9.5)

⇒ I(i) ≤ σ(x) (Definition 9.3)
⇒ I(i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

18 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

A Valid Partial Correctness Property

A Valid Partial Correctness Property

Example 9.11

• Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

• According to Definition 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int
• For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Definition 9.5)
⇒ I(i) ≤ σ(x) (Definition 9.3)

⇒ I(i) < σ(x) + 1
= (CJx := x+1Kσ)(x)

⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

18 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

A Valid Partial Correctness Property

A Valid Partial Correctness Property

Example 9.11

• Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

• According to Definition 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int
• For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Definition 9.5)
⇒ I(i) ≤ σ(x) (Definition 9.3)
⇒ I(i) < σ(x) + 1

= (CJx := x+1Kσ)(x)

⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

18 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

A Valid Partial Correctness Property

A Valid Partial Correctness Property

Example 9.11

• Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

• According to Definition 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int
• For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Definition 9.5)
⇒ I(i) ≤ σ(x) (Definition 9.3)
⇒ I(i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)

⇒ claim

18 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

A Valid Partial Correctness Property

A Valid Partial Correctness Property

Example 9.11

• Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

• According to Definition 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int
• For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Definition 9.5)
⇒ I(i) ≤ σ(x) (Definition 9.3)
⇒ I(i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

18 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Proof Rules for Partial Correctness

Outline of Lecture 9

The Axiomatic Approach

The Assertion Language

Semantics of Assertions

Partial Correctness Properties

A Valid Partial Correctness Property

Proof Rules for Partial Correctness

19 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Proof Rules for Partial Correctness

Hoare Logic I

Goal: syntactic derivation of valid partial correctness properties.
Here A[x 7→ a] denotes the syntactic replacement of every
occurrence of x by a in A.

Tony Hoare (* 1934)

Definition 9.12 (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]} x:=a {A}

(seq)

{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

(if)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 end {B}

(while)

{A ∧ b} c {A}
{A} while b do c end {A ∧ ¬b}

(cons)

|= (A⇒ A′) {A′} c {B′} |= (B′ ⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it is derivable by
the Hoare rules. In (while), A is called a (loop) invariant.

20 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Proof Rules for Partial Correctness

Hoare Logic II

Example 9.13 (Factorial program)

Proof of {A} y:=1;c {B} where

c := (while ¬(x=1) do y := y*x; x:= x-1 end)
A := (x > 0 ∧ x = i)
B := (y = i!)

(on the board)

Structure of the proof:

(seq)

(cons)
4

(asgn)
5 6

2
(cons)

7
(while)

(cons)
11

(seq)

(asgn)
14

(asgn)
15

12 13
10

8 9
3

1

21 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Proof Rules for Partial Correctness

Hoare Logic II

Example 9.13 (Factorial program)

Proof of {A} y:=1;c {B} where

c := (while ¬(x=1) do y := y*x; x:= x-1 end)
A := (x > 0 ∧ x = i)
B := (y = i!)

(on the board)

Structure of the proof:

(seq)

(cons)
4

(asgn)
5 6

2
(cons)

7
(while)

(cons)
11

(seq)

(asgn)
14

(asgn)
15

12 13
10

8 9
3

1

21 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

Proof Rules for Partial Correctness

Hoare Logic III

Example 9.13 (continued)

Here the respective propositions are given by (where C := (x > 0 ∧ y ∗ x! = i!)):

1. {A} y := 1;c {B}
2. {A} y := 1 {C}
3. {C} c {B}
4. |= (A⇒ C[y 7→ 1])
5. {C[y 7→ 1]} y := 1 {C}
6. |= (C ⇒ C)
7. |= (C ⇒ C)
8. {C} c {¬(¬(x = 1)) ∧ C}
9. |= (¬(¬(x = 1)) ∧ C ⇒ B)

10. {¬(x = 1) ∧ C} y := y*x; x := x-1 {C}
11. |= (¬(x = 1) ∧ C ⇒ C[x 7→ x-1, y 7→ y*x])
12. {C[x 7→ x-1, y 7→ y*x]} y := y*x; x := x-1 {C}
13. |= (C ⇒ C)
14. {C[x 7→ x-1, y 7→ y*x]} y := y*x {C[x 7→ x-1]}
15. {C[x 7→ x-1]} x := x-1 {C}

22 of 22 Semantics and Verification of Software
Summer Semester 2015
Lecture 9: Axiomatic Semantics of WHILE I (Hoare Logic)

	The Axiomatic Approach
	The Assertion Language
	Semantics of Assertions
	Partial Correctness Properties
	A Valid Partial Correctness Property
	Proof Rules for Partial Correctness

