

Semantics and Verification of Software

Summer Semester 2015

Lecture 7: Denotational Semantics of WHILE II (CCPOs and Continuous Functions)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University
http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Recap: The Denotational Approach

Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

$$
\mathfrak{C} \llbracket . \rrbracket: C m d \rightarrow(\Sigma \rightarrow \Sigma),
$$

is given by:

$$
\begin{aligned}
& \mathfrak{C} \llbracket \text { skip } \rrbracket:=\mathrm{id} \Sigma \\
& \mathfrak{C} \llbracket x:=a \rrbracket \sigma:=\sigma[x \mapsto \mathfrak{A} \llbracket a \rrbracket \sigma] \\
& \mathfrak{C} \llbracket c_{1} ; c_{2} \rrbracket:=\mathfrak{C} \llbracket c_{2} \rrbracket \circ \mathfrak{C} \llbracket c_{1} \rrbracket \\
& \mathfrak{C} \llbracket \text { if } b \text { then } c_{1} \text { else } c_{2} \text { end } \rrbracket:=\operatorname{cond}\left(\mathfrak{B} \llbracket b \rrbracket, \mathbb{C} \llbracket c_{1} \rrbracket, \mathfrak{C} \llbracket c_{2} \rrbracket\right) \\
& \mathfrak{C} \llbracket \text { while } b \text { do } c \text { end } \rrbracket:=\text { fix }(\Phi)
\end{aligned}
$$

where $\Phi:(\Sigma \rightarrow \Sigma) \rightarrow(\Sigma \rightarrow \Sigma): f \mapsto \operatorname{cond}\left(\mathfrak{B} \llbracket b \rrbracket, f \circ \mathfrak{C} \llbracket c \rrbracket, i d_{\Sigma}\right)$

Recap: The Denotational Approach

Characterisation of fix (Φ) I

Now fix(Φ) can be characterised by:

- $\operatorname{fix}(\Phi)$ is a fixpoint of Φ, i.e.,

$$
\Phi(\operatorname{fix}(\Phi))=\mathrm{fix}(\Phi)
$$

- $\operatorname{fix}(\Phi)$ is minimal with respect to \sqsubseteq, i.e., for every $f_{0}: \Sigma \rightarrow \Sigma$ such that $\Phi\left(f_{0}\right)=f_{0}$,

$$
\operatorname{fix}(\Phi) \sqsubseteq f_{0}
$$

Example

For while true do skip end we obtain for every $f: \Sigma \rightarrow \Sigma$:

$$
\Phi(f)=\operatorname{cond}\left(\mathfrak{B} \llbracket \operatorname{true} \rrbracket, f \circ \mathfrak{C} \llbracket \operatorname{skip} \rrbracket, \operatorname{id}_{\Sigma}\right)=f
$$

$\Rightarrow \operatorname{fix}(\Phi)=f_{\emptyset}$ where $f_{\emptyset}(\sigma):=$ undefined for every $\sigma \in \Sigma$ (that is, graph $\left.\left(f_{\emptyset}\right)=\emptyset\right)$

Recap: The Denotational Approach

Characterisation of fix(Φ) II

Goals:

- Prove existence of fix (Φ) for $\Phi(f)=\operatorname{cond}\left(\mathfrak{B} \llbracket b \rrbracket, f \circ \mathfrak{C} \llbracket c \rrbracket\right.$, id $\left.{ }_{\Sigma}\right)$
- Show how it can be "computed" (more exactly: approximated)

Sufficient conditions:

on domain $\Sigma \rightarrow$: chain-complete partial order $^{\text {s }}$
on function Φ : monotonicity and continuity

Chain-Complete Partial Orders

Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_{1}, d_{2}, d_{3} \in D$,
reflexivity: $d_{1} \sqsubseteq d_{1}$
transitivity: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{3} \Rightarrow d_{1} \sqsubseteq d_{3}$
antisymmetry: $d_{1} \sqsubseteq d_{2}$ and $d_{2} \sqsubseteq d_{1} \Rightarrow d_{1}=d_{2}$
It is called total if, in addition, always $d_{1} \sqsubseteq d_{2}$ or $d_{2} \sqsubseteq d_{1}$.

Example 7.2

1. (\mathbb{N}, \leq) is a total partial order
2. $\left(2^{\mathbb{N}}, \subseteq\right)$ is a (non-total) partial order
3. $(\mathbb{N},<)$ is not a partial order (since not reflexive)

Chain-Complete Partial Orders

Application to fix (Φ)

Lemma 7.3

$(\Sigma \rightarrow \Sigma, \sqsubseteq)$ is a partial order.

Proof.

Using the equivalence $f \sqsubseteq g \Longleftrightarrow \operatorname{graph}(f) \subseteq$ graph (g) and the partial-order property of \subseteq

Chain-Complete Partial Orders

Chains and Least Upper Bounds I

Definition 7.4 (Chain, (least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.

1. S is called a chain in D if, for every $s_{1}, s_{2} \in S$,

$$
s_{1} \sqsubseteq s_{2} \text { or } s_{2} \sqsubseteq s_{1}
$$

(that is, S is a totally ordered subset of D).
2. An element $d \in D$ is called an upper bound of S if $s \sqsubseteq d$ for every $s \in S$ (notation: $S \sqsubseteq d$).
3. An upper bound d of S is called least upper bound (LUB) or supremum of S if $d \sqsubseteq d^{\prime}$ for every upper bound d^{\prime} of S (notation: $d=\bigsqcup S$).

Chain-Complete Partial Orders

Chains and Least Upper Bounds II

Example 7.5

1. Every subset $S \subseteq \mathbb{N}$ is a chain in (\mathbb{N}, \leq).

It has a LUB (its greatest element) iff it is finite.
2. $\{\emptyset,\{0\},\{0,1\}, \ldots\}$ is a chain in $\left(2^{\mathbb{N}}, \subseteq\right)$ with LUB \mathbb{N}.
3. Let $x \in \operatorname{Var}$, and let $f_{i}: \Sigma \rightarrow \Sigma$ for every $i \in \mathbb{N}$ be given by

$$
f_{i}(\sigma):= \begin{cases}\sigma[x \mapsto \sigma(x)+1] & \text { if } \sigma(x) \leq i \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Then $\left\{f_{0}, f_{1}, f_{2}, \ldots\right\}$ is a chain in $(\Sigma \rightarrow \Sigma, \sqsubseteq)$, since for every $i \in \mathbb{N}$ and $\sigma, \sigma^{\prime} \in \Sigma$:

$$
\begin{aligned}
& f_{i}(\sigma)=\sigma^{\prime} \\
\Rightarrow & \sigma(x) \leq i, \sigma^{\prime}=\sigma[x \mapsto \sigma(x)+1] \\
\Rightarrow & \sigma(x) \leq i+1, \sigma^{\prime}=\sigma[x \mapsto \sigma(x)+1] \\
\Rightarrow & f_{i+1}(\sigma)=\sigma^{\prime} \\
\Rightarrow & f_{i} \sqsubseteq f_{i+1}
\end{aligned}
$$

Chain-Complete Partial Orders

Chain Completeness

Definition 7.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a least upper bound.

Example 7.7

1. $\left(2^{\mathbb{N}}, \subseteq\right)$ is a CCPO with $\sqcup S=\bigcup_{M \in S} M$ for every chain $S \subseteq 2^{\mathbb{N}}$.
2. (\mathbb{N}, \leq) is not chain complete (since, e.g., the chain \mathbb{N} has no upper bound).

Chain-Complete Partial Orders

Least Elements in CCPOs

Corollary 7.8

Every CCPO has a least element $\square \emptyset$.

Proof.

Let (D, \sqsubseteq) be a CCPO.

- By definition, \emptyset is a chain in D.
- By definition, every $d \in D$ is an upper bound of \emptyset.
- Thus $\bigsqcup \emptyset$ exists and is the least element of D.

Chain-Complete Partial Orders

Application to fix (\$)

Lemma 7.9

$\bullet(\Sigma \rightarrow \Sigma, \sqsubseteq)$ is a CCPO with least element f_{\emptyset} where graph $\left(f_{\emptyset}\right)=\emptyset$.

- In particular, for every chain $S \subseteq \Sigma \rightarrow \Sigma$, graph $(\sqcup S)=\bigcup_{f \in S}$ graph (f).

Proof.

on the board

Example 7.10 (cf. Example 7.5(3))

Let $x \in \operatorname{Var}$, and let $f_{i}: \Sigma \rightarrow \Sigma$ for every $i \in \mathbb{N}$ be given by

$$
f_{i}(\sigma):= \begin{cases}\sigma[x \mapsto \sigma(x)+1] & \text { if } \sigma(x) \leq i \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Then $S:=\left\{f_{0}, f_{1}, f_{2}, \ldots\right\}$ is a chain (cf. Example 7.5(3)) with $\bigsqcup S=f$ where

$$
f: \Sigma \rightarrow \Sigma: \sigma \mapsto \sigma[x \mapsto \sigma(x)+1]
$$

Monotonic and Continuous Functions

Monotonicity I

Definition 7.11 (Monotonicity)

Let (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$ be partial orders, and let $F: D \rightarrow D^{\prime}$. F is called monotonic (w.r.t. (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$) if, for every $d_{1}, d_{2} \in D$,

$$
d_{1} \sqsubseteq d_{2} \Rightarrow F\left(d_{1}\right) \sqsubseteq^{\prime} F\left(d_{2}\right) .
$$

Interpretation: monotonic functions "preserve information"

Example 7.12

1. Let $T:=\{S \subseteq \mathbb{N} \mid S$ finite $\}$. Then $F_{1}: T \rightarrow \mathbb{N}: S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $\left(2^{\mathbb{N}}, \subseteq\right)$ and (\mathbb{N}, \leq).
2. $F_{2}: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}: S \mapsto \mathbb{N} \backslash S$ is not monotonic w.r.t. $\left(2^{\mathbb{N}}, \subseteq\right)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $F_{2}(\emptyset)=\mathbb{N} \nsubseteq F_{2}(\mathbb{N})=\emptyset$).

Monotonic and Continuous Functions

Application to fix (Φ)
Lemma 7.13
Let $b \in B E x p, c \in C m d$, and $\Phi:(\Sigma \rightarrow \Sigma) \rightarrow(\Sigma \rightarrow \Sigma)$ with $\Phi(f):=\operatorname{cond}(\mathfrak{B} \llbracket b \rrbracket, f \circ \mathfrak{C} \llbracket c \rrbracket$, id $\Sigma)$. Then Φ is monotonic w.r.t. $(\Sigma \rightarrow \Sigma, \sqsubseteq)$.

Proof.

on the board

Monotonic and Continuous Functions

Monotonicity II

The following lemma states how chains behave under monotonic functions.

```
Lemma }7.1
Let ( }D,\sqsubseteq)\mathrm{ and ( }\mp@subsup{D}{}{\prime},\mp@subsup{\sqsubseteq}{}{\prime})\mathrm{ be CCPOs, F : D }->\mp@subsup{D}{}{\prime}\mathrm{ monotonic, and S }\subseteqD\mathrm{ a chain in D.
Then:
1.}F(S):={F(d)|d\inS}\mathrm{ is a chain in D'.
2. \bigsqcupF(S)\sqsubseteq}\mp@subsup{\sqsubseteq}{}{\prime}F(\bigsqcupS)
```


Proof.

on the board

Monotonic and Continuous Functions

Continuity

A function F is continuous if applying F and taking LUBs is commutable:

Definition 7.15 (Continuity)

Let (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$ be CCPOs and $F: D \rightarrow D^{\prime}$ monotonic. Then F is called continuous (w.r.t. (D, \sqsubseteq) and $\left(D^{\prime}, \sqsubseteq^{\prime}\right)$) if, for every non-empty chain $S \subseteq D$,

$$
F(\bigsqcup s)=\bigsqcup F(S)
$$

Lemma 7.16
Let $b \in B E x p, c \in C m d$, and $\Phi(f):=\operatorname{cond}(\mathfrak{B} \llbracket b \rrbracket, f \circ \mathfrak{C} \llbracket c \rrbracket$, id $\Sigma)$. Then Φ is continuous w.r.t. $(\Sigma \rightarrow \Sigma, \sqsubseteq)$.

Proof.

omitted

