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Recap: The Denotational Approach

Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2 endK := cond(BJbK,CJc1K,CJc2K)
CJwhile b do c endK := fix(Φ)

where Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
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Recap: The Denotational Approach

Characterisation of fix(Φ) I

Now fix(Φ) can be characterised by:
• fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

• fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ such that Φ(f0) = f0,

fix(Φ) v f0

Example

For while true do skip end we obtain for every f : Σ 99K Σ:

Φ(f ) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ (that is, graph(f∅) = ∅)
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Recap: The Denotational Approach

Characterisation of fix(Φ) II

Goals:
• Prove existence of fix(Φ) for Φ(f ) = cond(BJbK, f ◦ CJcK, idΣ)

• Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain Σ 99K Σ: chain-complete partial order
on function Φ: monotonicity and continuity
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Chain-Complete Partial Orders

Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a relation
v ⊆ D × D such that, for every d1, d2, d3 ∈ D,
reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 ⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 ⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 7.2

1. (N,≤) is a total partial order
2. (2N,⊆) is a (non-total) partial order
3. (N, <) is not a partial order (since not reflexive)
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Chain-Complete Partial Orders

Application to fix(Φ)

Lemma 7.3

(Σ 99K Σ,v) is a partial order.

Proof.

Using the equivalence f v g ⇐⇒ graph(f ) ⊆ graph(g) and the partial-order
property of ⊆
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Chain-Complete Partial Orders

Chains and Least Upper Bounds I

Definition 7.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.
1. S is called a chain in D if, for every s1, s2 ∈ S,

s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2. An element d ∈ D is called an upper bound of S if s v d for every s ∈ S (notation: S v d).
3. An upper bound d of S is called least upper bound (LUB) or supremum of S if d v d ′ for

every upper bound d ′ of S (notation: d =
⊔

S).
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Chain-Complete Partial Orders

Chains and Least Upper Bounds II

Example 7.5

1. Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

2. {∅, {0}, {0, 1}, . . .} is a chain in (2N,⊆) with LUB N.
3. Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi(σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then {f0, f1, f2, . . .} is a chain in (Σ 99K Σ,v), since for every i ∈ N and σ, σ′ ∈ Σ:

fi(σ) = σ′

⇒ σ(x) ≤ i, σ′ = σ[x 7→ σ(x) + 1]
⇒ σ(x) ≤ i + 1, σ′ = σ[x 7→ σ(x) + 1]
⇒ fi+1(σ) = σ′

⇒ fi v fi+1
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Chain-Complete Partial Orders

Chain Completeness

Definition 7.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a least
upper bound.

Example 7.7

1. (2N,⊆) is a CCPO with
⊔

S =
⋃

M∈S M for every chain S ⊆ 2N.
2. (N,≤) is not chain complete (since, e.g., the chain N has no upper bound).
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Chain-Complete Partial Orders

Least Elements in CCPOs

Corollary 7.8

Every CCPO has a least element
⊔
∅.

Proof.

Let (D,v) be a CCPO.
• By definition, ∅ is a chain in D.
• By definition, every d ∈ D is an upper bound of ∅.
• Thus

⊔
∅ exists and is the least element of D.
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Chain-Complete Partial Orders

Application to fix(Φ)

Lemma 7.9

• (Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.
• In particular, for every chain S ⊆ Σ 99K Σ, graph (

⊔
S) =

⋃
f∈S graph(f ).

Proof.

on the board

Example 7.10 (cf. Example 7.5(3))

Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi(σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then S := {f0, f1, f2, . . .} is a chain (cf. Example 7.5(3)) with
⊔

S = f where
f : Σ→ Σ : σ 7→ σ[x 7→ σ(x) + 1]
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Monotonic and Continuous Functions

Monotonicity I

Definition 7.11 (Monotonicity)

Let (D,v) and (D′,v′) be partial orders, and let F : D → D′. F is called monotonic
(w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 ⇒ F(d1) v′ F(d2).

Interpretation: monotonic functions “preserve information”

Example 7.12

1. Let T := {S ⊆ N | S finite}. Then F1 : T → N : S 7→
∑

n∈S n is monotonic w.r.t. (2N,⊆)
and (N,≤).

2. F2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but F2(∅) = N 6⊆ F2(N) = ∅).
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Monotonic and Continuous Functions

Application to fix(Φ)

Lemma 7.13

Let b ∈ BExp, c ∈ Cmd, and Φ : (Σ 99K Σ)→ (Σ 99K Σ) with
Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is monotonic w.r.t. (Σ 99K Σ,v).

Proof.

on the board
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Monotonic and Continuous Functions

Monotonicity II

The following lemma states how chains behave under monotonic functions.

Lemma 7.14

Let (D,v) and (D′,v′) be CCPOs, F : D → D′ monotonic, and S ⊆ D a chain in D.
Then:
1. F (S) := {F (d) | d ∈ S} is a chain in D′.
2.
⊔

F (S) v′ F (
⊔

S).

Proof.

on the board
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Monotonic and Continuous Functions

Continuity

A function F is continuous if applying F and taking LUBs is commutable:

Definition 7.15 (Continuity)

Let (D,v) and (D′,v′) be CCPOs and F : D → D′ monotonic. Then F is called
continuous (w.r.t. (D,v) and (D′,v′)) if, for every non-empty chain S ⊆ D,

F
(⊔

S
)

=
⊔

F(S).

Lemma 7.16

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is
continuous w.r.t. (Σ 99K Σ,v).

Proof.

omitted
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