Semantics and Verification of Software

Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE | (The Approach)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

’ Software Modeling

‘ Il and Verification Chair



http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

The Denotational Approach

Denotational Semantics of WHILE

e Primary aspect of a program: its “effect”, i.e., input/output behavior
e In operational semantics: indirect definition of semantic functional

O[.]: Cmd — (X --» )

by execution relation
e Now: abstract from operational details

e Denotational semantics: direct definition of program effect by induction on its syntactic
structure

3of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE | (The Approach) ‘

RWTH

Software Modeling
Il and Verification Chair



Denotational Semantics of Expressions

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state
Definition 6.1 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,

ALL] : AExp — (T — 7Z),

IS given by:
A[z]o =z Alai+as]o = Alar]o + A]az]o
A[x]o:=0(x) Alai-a]o :=A]ai]o — A|ax]o
Alay*ap]o := Al a]o - Al as]lo
e . .. |RWH
Lecture 6: Denotational Semantics of WHILE | (The Approach) = ar(:d “",':rri‘f’ica(:ioz'gﬂair




Denotational Semantics of Expressions

Semantics of Boolean Expressions

Definition 6.2 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions is given by
B[.] : BExp — (X — B) where

Btlo =t |
Blacal = (e onemie
e
Bl = ;;Lljsee gt?e'fe\/]%ge: e
R
Blby V bolo = I?lljsée gth%;gv)\;i]ig = B[by]o = false
T s e ..., |FWIH




Denotational Semantics of Statements

The Goal

e Now: semantic functional
C[.]: Cmd — (X --» X)

e Same type as operational functional
O[] : Cmd — (X --» X)

(in fact, both will turn out to be the same
= equivalence of operational and denotational semantics)

8 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE | (The Approach) ‘

RWTH

Software Modeling
Il and Verification Chair



Denotational Semantics of Statements

Auxiliary Functions

Inductive definition of €[.] employs following auxiliary functions:
e identity onstates: idy : 2 --» 2 .0 +— 0
e (strict) composition of partial state transformations:

o (L-—»X)x(X--+Y)—>(X--»%)
where, forevery f.g: 2 --» X and o € %,
_ Ja(f(0)) if f(0') defined
(gof)(o):= {undefined otherwise
e semantic conditional:
cond: (X > B)x (E-—-Y)x(X--»%)—=(X--»%)
where, foreveryp: X — B, f,g: 2L --» L,and o € L,

ol .910): {40 e

RWTH

Summer Semester 2015

9 of 24 Semantics and Verification of Software o
Lecture 6: Denotational Semantics of WHILE | (The Approach) ‘

Software Modeling
Il and Verification Chair



Denotational Semantics of Statements

Semantics of Statements |
Definition 6.3 (Denotational semantics of statements)
The (denotational) semantic functional for statements,
Cl.]: Cmd — (X --» X),
IS given by:
C[skip] :=idy
Clx :=afo = o[x — A]a]o’
Clers ] == €[e] o Ce]
C[if bthen ¢ else ¢, end] := cond(B[b], Ccq], €[cs])
C[while b do c end] := fix(P)

where ® : (X --» X) — (X --» X) : f — cond(B[b], f o €[c], idy)

10 of 24 Semantics and Verification of Software o nm
Software Modeling

Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE | (The Approach) Bl and Verification Chair



Denotational Semantics of Statements

Semantics of Statements Il

Remarks:
e Definition of €[c] given by induction on syntactic structure of ¢ € Cmd
— in particular, €[while b do ¢ end] only refers to B [b] and €|c]
(and not to €[[while b do ¢ end] again)
— note difference to O [c]:
(b,c) — true (c,0) — o’ (while bdoc,o’) — o”
(while bdo cend, o) — o”

(wh-t)

e InCci;cf := €[co] o €[ci], function composition o has to be strict since non-termination
of ¢ implies non-termination of ¢y ; ¢

e In C[while b do c end] := fix(®), fix denotes a fixpoint operator
(which remains to be defined)
= “fixpoint semantics”

But: why fixpoints?

11 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE | (The Approach) ‘

RWTH

Software Modeling
Il and Verification Chair



Denotational Semantics of Statements

Why Fixpoints?

e Goal: preserve validity of equivalence
¢[while b do ¢ end] o C[if b then c;while b do c end else skip end]

(cf. Lemma 4.3)
e Using the known parts of Definition 6.3, we obtain:
C[while b do c end]

- C[if b then c;while b do ¢ end else skip end]

P23 cond(B[b], €[c;while b do ¢ end], €[skip])

L83 cond(B[[b], €[while b do ¢ end] o €[c], idy)

e Abbreviating f := C[while b do ¢ end] this yields:
f = cond(*B[b], f o €[c],idx)
e Hence f must be a solution of this recursive equation
e In other words: f must be a fixpoint of the mapping
:(X--»%)—=>(X--+X):f—cond(®B[b], f o €[c],ids)
(since the equation can be stated as f = ®(f))

RWTH

Summer Semester 2015

12 of 24 Semantics and Verification of Software o
Lecture 6: Denotational Semantics of WHILE | (The Approach) ‘

Software Modeling
Il and Verification Chair



Denotational Semantics of Statements

Well-Definedness of Fixpoint Semantics
But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:
Existence: there does not need to exist any fixpoint. Examples:
1. o1 : N — N: n+— n+ 1 has no fixpoint

o o o =g
2.01:(X-—>X) = (X +Z)-"H{gz otherwise

has no fixpoint if g; # g»
Solution: in our setting, fixpoints always exist
Uniqueness: there might exist several fixpoints. Examples:
1. ¢2 : N — N : n+ n® has fixpoints {0, 1}
2. every state transformation f is a fixpointof ®, : (X -—» X)) - (X -—» X)) : f— f
Solution: uniqgueness guaranteed by choosing a special fixpoint

RWTH

Summer Semester 2015

13 of 24 Semantics and Verification of Software o
Lecture 6: Denotational Semantics of WHILE | (The Approach) ‘

Software Modeling
Il and Verification Chair



Characterisation of fix(P)

Characterisation of fix(®)

eletbe BExpand c € Cmd

e Let &(f) := cond(B[b], f o €[], ids)

o Letfp: ¥ --» ¥ be afixpoint of @, i.e., ®(fh) = fy

e Given some initial state oy € X, we will distinguish the following cases:

1. loop while b do ¢ end terminates after n iterations (n € N)
2. body c diverges in the n-th iteration (as it contains a non-terminating while statement)
3. loop while b do ¢ end itself diverges

15 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE | (The Approach) ‘

RWTH

Software Modeling
Il and Verification Chair



Characterisation of fix(P)

Case 1: Termination of Loop

e Loop while b do ¢ end terminates after niterations (n € N)
e Formally: there exist o4, ..., 0, € X such that

true If0<i<n

Bb]oi = false ifi=n

and

Clc]oi = oi 1 forevery 0 <i<n

e Now the definition ®(f) := cond(23[b], f o €[c], ids) implies, for every 0 < i < n,

d(fh)(oi) = (fo o €[c])(o;) since B[b]o; = true
= f0(0'/+1) and
d(fo)(on) = on since B[b]o, = false

e Since ¢(fy) = fy it follows that

foloj ifo0<i<n
fo(g,-){gof 1) ifi—n

and hence
fo(O’o) = fo(0'~|) = ... fo(O’n) = On

= All fixpoints fy coincide on oq (with result o,)!

Summer Semester 2015

16 of 24 Semantics and Verification of Software o
Lecture 6: Denotational Semantics of WHILE | (The Approach) ‘

Software Modeling

Il and Verification Chair

RWTH



Characterisation of fix(P)

Case 2: Divergence of Body

e Body c diverges in the n-th iteration
(since it contains a non-terminating while statement)

e Formally: there exist o4, ...,0,_1 € L such that
B[b]o; = true for every 0 < i < nand
o if0<i<n-—2
€[c)oi = {undefined ifi=n—1

e Just as in the previous case (setting o, := undefined) it follows that

fo(0o) = undefined

= Again all fixpoints fy coincide on oy (with undefined result)!

RWTH

Summer Semester 2015

17 of 24 Semantics and Verification of Software o
Lecture 6: Denotational Semantics of WHILE | (The Approach) ‘

Software Modeling
Il and Verification Chair



Characterisation of fix(P)

Case 3: Divergence of Loop

e Loop while b do ¢ end diverges
e Formally: there exist 01,02, ... € 2 such that

B[b]o; =true and
C[c]o; =oj1 foreveryie N

e Here only derivable:
fo(oo) = fo(o;) foreveryie N

= Value of fy(og) not determined!

18 of 24 Semantics and Verification of Software nm
Summer Semester 2015 Soft Modeli
Lecture 6: Denotational Semantics of WHILE | (The Approach) M o Sotware Modeling




Characterisation of fix(P)

Summary

For ®(fy) = f, and initial state oy € %, case distinction yields:
1. Loop while b do ¢ end terminates after niterations (n € N)
= fo(O’o) = Op
2. Body c diverges in the n-th iteration
= fo(00) = undefined
3. Loop while b do ¢ end diverges
= no condition on f (only fy(og) = fy(o;) for every i € N)
e Not surprising since, e.g., for the loop while true do skip end every f: > --» 2 isa
fixpoint:
¢(f) = cond(B[true], f o €[skip],idy) = f

e On the other hand, our operational understanding requires, for every oy € %,
¢[while true do skip end]oo = undefined

Conclusion
fix(®) is the least defined fixpoint of .

RWTH

19 of 24 Semantics and Verification of Software
Summer Semester 2015 Soft Modeli
Lecture 6: Denotational Semantics of WHILE | (The Approach) M o Sotware Modeling




Making It Precise

Making It Precise |

To use fixpoint theory, the notion of “least defined” has to be made precise.
e Givenf,g: 2 --» 2, let

/

fCg < foreveryo,0' €L :floc)=0"=g(oc)=0

(g is “at least as defined” as 1)
e Equivalent to requiring
graph(f) C graph(g)
where
graph(h) := {(0,0") | 0 € X,0’ = h(c) defined} C X x &
forevery h: 2 --» L

RWTH

Summer Semester 2015

21 of 24 Semantics and Verification of Software o
Lecture 6: Denotational Semantics of WHILE | (The Approach) ‘

Software Modeling
Il and Verification Chair



Making It Precise

Making It Precise Il

Example 6.4
Let x € Var be fixed, and let fy, f;, -, f3 : 2 --+ X be given by

fo(o) := undefined

o if o(x) even
fi(o) := undefined otherwise

_Jo if (T(X) odd
R(0) = undefined otherwise
f3(c) =0

Thisimplies oy C i C £, /i E H T 5, f; L h,and b £ f

RWTH

22 of 24 Semantics and Verification of Software
Summer Semester 2015 Soft Modeli
Lecture 6: Denotational Semantics of WHILE | (The Approach) BN o Voriscatior Chair




Making It Precise

Characterisation of fix(®) |

Now fix(®) can be characterised by:

e fix(®) is a fixpoint of @, i.e.,
d(fix(P)) = fix(P)

e fix(®) is minimal with respect to C, i.e., for every fy : ¥ --» ¥ such that ®(fy) = f,,

fix(®) C

Example 6.5
For while true do skip end we obtain for every f : 2 --» 2.
®(f) = cond(Btrue], f o €[skip],idy) = f
= fix(®) = fy where fj(c) := undefined for every o € ¥ (that is, graph(f;)

0)

RWTH

23 of 24 Semantics and Verification of Software
Summer Semester 2015 _
Lecture 6: Denotational Semantics of WHILE I (The Approach) o Softwars Meleling




Making It Precise

Characterisation of fix(®) Il

Goals:
e Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c], idx)
e Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain X --+ X: chain-complete partial order
on function ®: monotonicity and continuity

24 of 24 Semantics and Verification of Software
Summer Semester 2015 _
Lecture 6: Denotational Semantics of WHILE I (The Approach) M o Sotware Modeling

RWTH




	The Denotational Approach
	Denotational Semantics of Expressions
	Denotational Semantics of Statements
	Characterisation of fix()
	Making It Precise

