
Semantics and Verification of Software
Summer Semester 2015

Lecture 6: Denotational Semantics of WHILE I (The Approach)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/


The Denotational Approach

Denotational Semantics of WHILE

• Primary aspect of a program: its “effect”, i.e., input/output behavior
• In operational semantics: indirect definition of semantic functional

OJ.K : Cmd → (Σ 99K Σ)

by execution relation
• Now: abstract from operational details
• Denotational semantics: direct definition of program effect by induction on its syntactic

structure

3 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Denotational Semantics of Expressions

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 6.1 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,

AJ.K : AExp → (Σ→ Z),

is given by:

AJzKσ := z AJa1+a2Kσ := AJa1Kσ + AJa2Kσ
AJxKσ := σ(x) AJa1-a2Kσ := AJa1Kσ − AJa2Kσ

AJa1*a2Kσ := AJa1Kσ · AJa2Kσ

5 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Denotational Semantics of Expressions

Semantics of Boolean Expressions

Definition 6.2 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions is given by
BJ.K : BExp → (Σ→ B) where

BJtKσ := t

BJa1=a2Kσ :=

{
true if AJa1Kσ = AJa2Kσ
false otherwise

BJa1>a2Kσ :=

{
true if AJa1Kσ > AJa2Kσ
false otherwise

BJ¬bKσ :=

{
true if BJbKσ = false
false otherwise

BJb1 ∧ b2Kσ :=

{
true if BJb1Kσ = BJb2Kσ = true
false otherwise

BJb1 ∨ b2Kσ :=

{
false if BJb1Kσ = BJb2Kσ = false
true otherwise

6 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Denotational Semantics of Statements

The Goal

• Now: semantic functional
CJ.K : Cmd → (Σ 99K Σ)

• Same type as operational functional

OJ.K : Cmd → (Σ 99K Σ)

(in fact, both will turn out to be the same
⇒ equivalence of operational and denotational semantics)

8 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Denotational Semantics of Statements

Auxiliary Functions

Inductive definition of CJ.K employs following auxiliary functions:
• identity on states: idΣ : Σ 99K Σ : σ 7→ σ

• (strict) composition of partial state transformations:

◦ : (Σ 99K Σ)× (Σ 99K Σ)→ (Σ 99K Σ)

where, for every f , g : Σ 99K Σ and σ ∈ Σ,

(g ◦ f )(σ) :=

{
g(f (σ)) if f (σ) defined
undefined otherwise

• semantic conditional:

cond : (Σ→ B)× (Σ 99K Σ)× (Σ 99K Σ)→ (Σ 99K Σ)

where, for every p : Σ→ B, f , g : Σ 99K Σ, and σ ∈ Σ,

cond(p, f , g)(σ) :=

{
f (σ) if p(σ) = true
g(σ) otherwise

9 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Denotational Semantics of Statements

Semantics of Statements I

Definition 6.3 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2 endK := cond(BJbK,CJc1K,CJc2K)
CJwhile b do c endK := fix(Φ)

where Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

10 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Denotational Semantics of Statements

Semantics of Statements II

Remarks:
• Definition of CJcK given by induction on syntactic structure of c ∈ Cmd

– in particular, CJwhile b do c endK only refers to BJbK and CJcK
(and not to CJwhile b do c endK again)

– note difference to OJcK:

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c end, σ〉 → σ′′

• In CJc1;c2K := CJc2K ◦ CJc1K, function composition ◦ has to be strict since non-termination
of c1 implies non-termination of c1;c2

• In CJwhile b do c endK := fix(Φ), fix denotes a fixpoint operator
(which remains to be defined)
⇒ “fixpoint semantics”

But: why fixpoints?

11 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Denotational Semantics of Statements

Why Fixpoints?

• Goal: preserve validity of equivalence

CJwhile b do c endK
(∗)
= CJif b then c;while b do c end else skip endK

(cf. Lemma 4.3)
• Using the known parts of Definition 6.3, we obtain:

CJwhile b do c endK
(∗)
= CJif b then c;while b do c end else skip endK

Def. 6.3
= cond(BJbK,CJc;while b do c endK,CJskipK)

Def. 6.3
= cond(BJbK,CJwhile b do c endK ◦ CJcK, idΣ)

• Abbreviating f := CJwhile b do c endK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

• Hence f must be a solution of this recursive equation
• In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

(since the equation can be stated as f = Φ(f ))

12 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Denotational Semantics of Statements

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:
Existence: there does not need to exist any fixpoint. Examples:

1. φ1 : N→ N : n 7→ n + 1 has no fixpoint

2. Φ1 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→
{

g1 if f = g2
g2 otherwise

has no fixpoint if g1 6= g2

Solution: in our setting, fixpoints always exist
Uniqueness: there might exist several fixpoints. Examples:

1. φ2 : N→ N : n 7→ n3 has fixpoints {0, 1}
2. every state transformation f is a fixpoint of Φ2 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ f

Solution: uniqueness guaranteed by choosing a special fixpoint

13 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Characterisation of fix(Φ)

Characterisation of fix(Φ)

• Let b ∈ BExp and c ∈ Cmd
• Let Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ)

• Let f0 : Σ 99K Σ be a fixpoint of Φ, i.e., Φ(f0) = f0
• Given some initial state σ0 ∈ Σ, we will distinguish the following cases:

1. loop while b do c end terminates after n iterations (n ∈ N)
2. body c diverges in the n-th iteration (as it contains a non-terminating while statement)
3. loop while b do c end itself diverges

15 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Characterisation of fix(Φ)

Case 1: Termination of Loop

• Loop while b do c end terminates after n iterations (n ∈ N)
• Formally: there exist σ1, . . . , σn ∈ Σ such that

BJbKσi =

{
true if 0 ≤ i < n
false if i = n and

CJcKσi = σi+1 for every 0 ≤ i < n

• Now the definition Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ) implies, for every 0 ≤ i < n,
Φ(f0)(σi) = (f0 ◦ CJcK)(σi) since BJbKσi = true

= f0(σi+1) and
Φ(f0)(σn) = σn since BJbKσn = false

• Since Φ(f0) = f0 it follows that

f0(σi) =

{
f0(σi+1) if 0 ≤ i < n
σn if i = n

and hence
f0(σ0) = f0(σ1) = . . . f0(σn) = σn

⇒ All fixpoints f0 coincide on σ0 (with result σn)!

16 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Characterisation of fix(Φ)

Case 2: Divergence of Body

• Body c diverges in the n-th iteration
(since it contains a non-terminating while statement)
• Formally: there exist σ1, . . . , σn−1 ∈ Σ such that

BJbKσi = true for every 0 ≤ i < n and

CJcKσi =

{
σi+1 if 0 ≤ i ≤ n − 2
undefined if i = n − 1

• Just as in the previous case (setting σn := undefined) it follows that

f0(σ0) = undefined

⇒ Again all fixpoints f0 coincide on σ0 (with undefined result)!

17 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Characterisation of fix(Φ)

Case 3: Divergence of Loop

• Loop while b do c end diverges
• Formally: there exist σ1, σ2, . . . ∈ Σ such that

BJbKσi = true and
CJcKσi = σi+1 for every i ∈ N

• Here only derivable:
f0(σ0) = f0(σi) for every i ∈ N

⇒ Value of f0(σ0) not determined!

18 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Characterisation of fix(Φ)

Summary

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:
1. Loop while b do c end terminates after n iterations (n ∈ N)
⇒ f0(σ0) = σn

2. Body c diverges in the n-th iteration
⇒ f0(σ0) = undefined

3. Loop while b do c end diverges
⇒ no condition on f0 (only f0(σ0) = f0(σi) for every i ∈ N)
• Not surprising since, e.g., for the loop while true do skip end every f : Σ 99K Σ is a

fixpoint:
Φ(f ) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

• On the other hand, our operational understanding requires, for every σ0 ∈ Σ,

CJwhile true do skip endKσ0 = undefined

Conclusion

fix(Φ) is the least defined fixpoint of Φ.

19 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Making It Precise

Making It Precise I

To use fixpoint theory, the notion of “least defined” has to be made precise.
• Given f , g : Σ 99K Σ, let

f v g ⇐⇒ for every σ, σ′ ∈ Σ : f (σ) = σ′ ⇒ g(σ) = σ′

(g is “at least as defined” as f )
• Equivalent to requiring

graph(f ) ⊆ graph(g)

where
graph(h) := {(σ, σ′) | σ ∈ Σ, σ′ = h(σ) defined} ⊆ Σ× Σ

for every h : Σ 99K Σ

21 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Making It Precise

Making It Precise II

Example 6.4

Let x ∈ Var be fixed, and let f0, f1, f2, f3 : Σ 99K Σ be given by

f0(σ) := undefined

f1(σ) :=

{
σ if σ(x) even
undefined otherwise

f2(σ) :=

{
σ if σ(x) odd
undefined otherwise

f3(σ) := σ

This implies f0 v f1 v f3, f0 v f2 v f3, f1 6v f2, and f2 6v f1

22 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Making It Precise

Characterisation of fix(Φ) I

Now fix(Φ) can be characterised by:
• fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

• fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ such that Φ(f0) = f0,

fix(Φ) v f0

Example 6.5

For while true do skip end we obtain for every f : Σ 99K Σ:

Φ(f ) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ (that is, graph(f∅) = ∅)

23 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)



Making It Precise

Characterisation of fix(Φ) II

Goals:
• Prove existence of fix(Φ) for Φ(f ) = cond(BJbK, f ◦ CJcK, idΣ)

• Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain Σ 99K Σ: chain-complete partial order
on function Φ: monotonicity and continuity

24 of 24 Semantics and Verification of Software
Summer Semester 2015
Lecture 6: Denotational Semantics of WHILE I (The Approach)


	The Denotational Approach
	Denotational Semantics of Expressions
	Denotational Semantics of Statements
	Characterisation of fix()
	Making It Precise

