

Semantics and Verification of Software

- Summer Semester 2015
- Lecture 6: Denotational Semantics of WHILE I (The Approach)
- Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Denotational Semantics of WHILE

- Primary aspect of a program: its "effect", i.e., input/output behavior
- In operational semantics: indirect definition of semantic functional

```
\mathfrak{O}[\![.]\!]:\textit{Cmd}\to (\Sigma\dashrightarrow \Sigma)
```

by execution relation

- Now: abstract from operational details
- Denotational semantics: direct definition of program effect by induction on its syntactic structure

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 6.1 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,

 $\mathfrak{A}[\![.]\!]:\textit{AExp} \to (\Sigma \to \mathbb{Z}),$

is given by:

$$\begin{aligned} \mathfrak{A}\llbracket z \rrbracket \sigma &:= z & \mathfrak{A}\llbracket a_1 + a_2 \rrbracket \sigma &:= \mathfrak{A}\llbracket a_1 \rrbracket \sigma + \mathfrak{A}\llbracket a_2 \rrbracket \sigma \\ \mathfrak{A}\llbracket x \rrbracket \sigma &:= \sigma(x) & \mathfrak{A}\llbracket a_1 - a_2 \rrbracket \sigma &:= \mathfrak{A}\llbracket a_1 \rrbracket \sigma - \mathfrak{A}\llbracket a_2 \rrbracket \sigma \\ \mathfrak{A}\llbracket a_1 + a_2 \rrbracket \sigma &:= \mathfrak{A}\llbracket a_1 \rrbracket \sigma \cdot \mathfrak{A}\llbracket a_2 \rrbracket \sigma \end{aligned}$$

Semantics of Boolean Expressions

Definition 6.2 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions is given by $\mathfrak{B}[\![.]\!]: BExp \to (\Sigma \to \mathbb{B})$ where $\mathfrak{B}[\![t]\!]\sigma := t$ $\mathfrak{B}[\![t]\!]\sigma := t$ $\mathfrak{B}[\![a_1\!=\!a_2]\!]\sigma := \begin{cases} \text{true} & \text{if } \mathfrak{A}[\![a_1]\!]\sigma = \mathfrak{A}[\![a_2]\!]\sigma \\ \text{false} & \text{otherwise} \end{cases}$ $\mathfrak{B}[\![a_1\!>\!a_2]\!]\sigma := \begin{cases} \text{true} & \text{if } \mathfrak{A}[\![a_1]\!]\sigma > \mathfrak{A}[\![a_2]\!]\sigma \\ \text{false} & \text{otherwise} \end{cases}$ $\mathfrak{B}[\![\neg b]\!]\sigma := \begin{cases} \text{true} & \text{if } \mathfrak{B}[\![b]\!]\sigma = \text{false} \\ \text{false} & \text{otherwise} \end{cases}$ $\mathfrak{B}[\![b_1 \wedge b_2]\!]\sigma := \begin{cases} \text{true} & \text{if } \mathfrak{B}[\![b_1]\!]\sigma = \mathfrak{B}[\![b_2]\!]\sigma = \text{true} \\ \text{false} & \text{otherwise} \end{cases}$ $\mathfrak{B}[\![b_1 \vee b_2]\!]\sigma := \begin{cases} \text{false} & \text{if } \mathfrak{B}[\![b_1]\!]\sigma = \mathfrak{B}[\![b_2]\!]\sigma = \text{false} \\ \text{true} & \text{otherwise} \end{cases}$

The Goal

• Now: semantic functional

$$\mathfrak{C}\llbracket.
brace: \mathsf{Cmd} o (\Sigma \dashrightarrow \Sigma)$$

• Same type as operational functional

 $\boldsymbol{\mathfrak{O}}[\![.]\!]:\textit{Cmd}\to (\Sigma\dashrightarrow \Sigma)$

(in fact, both will turn out to be the same \Rightarrow equivalence of operational and denotational semantics)

Auxiliary Functions

Inductive definition of $\mathfrak{C}[.]$ employs following auxiliary functions:

- identity on states: $id_{\Sigma} : \Sigma \dashrightarrow \Sigma : \sigma \mapsto \sigma$
- (strict) composition of partial state transformations:

 $\circ: (\Sigma \dashrightarrow \Sigma) imes (\Sigma \dashrightarrow \Sigma) o (\Sigma \dashrightarrow \Sigma)$

where, for every $f, g : \Sigma \dashrightarrow \Sigma$ and $\sigma \in \Sigma$,

 $(g \circ f)(\sigma) := \begin{cases} g(f(\sigma)) & \text{if } f(\sigma) \text{ defined} \\ \text{undefined} & \text{otherwise} \end{cases}$

• semantic conditional:

 $\mathsf{cond}: (\Sigma \to \mathbb{B}) \times (\Sigma \dashrightarrow \Sigma) \times (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma)$

where, for every $p : \Sigma \to \mathbb{B}$, $f, g : \Sigma \dashrightarrow \Sigma$, and $\sigma \in \Sigma$,

$$\operatorname{cond}(p, f, g)(\sigma) := \begin{cases} f(\sigma) & \text{if } p(\sigma) = \operatorname{true} \\ g(\sigma) & \text{otherwise} \end{cases}$$

Semantics of Statements I

Definition 6.3 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

$$\mathfrak{C}[\![.]\!]:\textit{Cmd}\to (\Sigma\dashrightarrow \Sigma),$$

is given by:

$$\begin{split} & \mathfrak{C}[\![\operatorname{skip}]\!] := \operatorname{id}_{\Sigma} \\ & \mathfrak{C}[\![x := a]\!]\sigma := \sigma[x \mapsto \mathfrak{A}[\![a]\!]\sigma] \\ & \mathfrak{C}[\![c_1; c_2]\!] := \mathfrak{C}[\![c_2]\!] \circ \mathfrak{C}[\![c_1]\!] \\ & \mathfrak{C}[\![\operatorname{if} b \operatorname{then} c_1 \operatorname{else} c_2 \operatorname{end}\!] := \operatorname{cond}(\mathfrak{B}[\![b]\!], \mathfrak{C}[\![c_1]\!], \mathfrak{C}[\![c_2]\!]) \\ & \mathfrak{C}[\![\operatorname{while} b \operatorname{do} c \operatorname{end}\!] := \operatorname{fix}(\Phi) \end{split}$$
where $\Phi : (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma) : f \mapsto \operatorname{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \operatorname{id}_{\Sigma})$

 10 of 24
 Semantics and Verification of Software

 Summer Semester 2015
 Lecture 6: Denotational Semantics of WHILE I (The Approach)

Denotational Semantics of Statements

Semantics of Statements II

Remarks:

- Definition of $\mathfrak{C}[c]$ given by induction on syntactic structure of $c \in Cmd$
 - in particular, $\mathfrak{C}[while \ b \ do \ c \ end]$ only refers to $\mathfrak{B}[b]$ and $\mathfrak{C}[c]$ (and not to $\mathfrak{C}[while \ b \ do \ c \ end]$ again)
 - note difference to $\mathfrak{O}[[c]]$:

$$\frac{\langle \boldsymbol{b}, \sigma \rangle \to \mathsf{true} \ \langle \boldsymbol{c}, \sigma \rangle \to \sigma' \ \langle \mathsf{while} \ \boldsymbol{b} \ \mathsf{do} \ \boldsymbol{c}, \sigma' \rangle \to \sigma''}{\langle \mathsf{while} \ \boldsymbol{b} \ \mathsf{do} \ \boldsymbol{c} \ \mathsf{end}, \sigma \rangle \to \sigma''}$$

- In ℭ[[c₁; c₂]] := ℭ[[c₂]] ∘ ℭ[[c₁]], function composition ∘ has to be strict since non-termination of c₁ implies non-termination of c₁; c₂
- In C[[while b do c end]] := fix(Φ), fix denotes a fixpoint operator (which remains to be defined)
 - \Rightarrow "fixpoint semantics"
- But: why fixpoints?

Why Fixpoints?

• Goal: preserve validity of equivalence

 $\mathfrak{C}[[while \ b \ do \ c \ end]] \stackrel{(*)}{=} \mathfrak{C}[[if \ b \ then \ c; while \ b \ do \ c \ end \ else \ skip \ end]]$ (cf. Lemma 4.3)

• Using the known parts of Definition 6.3, we obtain:

 $\mathfrak{C}[[while \ b \ do \ c \ end]]$

 $\mathfrak{C}^{*} = \mathfrak{C}[\mathbf{if } b \mathbf{then } c; \mathbf{while } b \mathbf{do } c \mathbf{end else skip end}]$

 $\stackrel{\text{Def. 6.3}}{=} \operatorname{cond}(\mathfrak{B}[\![b]\!], \mathfrak{C}[\![c; while b \operatorname{do} c \operatorname{end}\!]], \mathfrak{C}[\![skip]\!])$

 $\stackrel{\text{Def. 6.3}}{=} \operatorname{cond}(\mathfrak{B}\llbracket b \rrbracket, \mathfrak{C}\llbracket \text{while } b \text{ do } c \text{ end} \rrbracket \circ \mathfrak{C}\llbracket c \rrbracket, \operatorname{id}_{\Sigma})$

• Abbreviating $f := \mathfrak{C}[[while b do c end]]$ this yields:

 $f = \operatorname{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \operatorname{id}_{\Sigma})$

- Hence *f* must be a solution of this recursive equation
- In other words: *f* must be a fixpoint of the mapping

 $\Phi: (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma): f \mapsto \mathsf{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \mathsf{id}_{\Sigma})$

(since the equation can be stated as $f = \Phi(f)$)

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:

Existence: there does not need to exist any fixpoint. Examples:

1. $\phi_1 : \mathbb{N} \to \mathbb{N} : \mathbf{n} \mapsto \mathbf{n} + \mathbf{1}$ has no fixpoint

2.
$$\Phi_1 : (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma) : f \mapsto \begin{cases} g_1 & \text{if } f = g_2 \\ g_2 & \text{otherwise} \end{cases}$$

has no fixpoint if $g_1 \neq g_2$

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:

1. $\phi_2 : \mathbb{N} \to \mathbb{N} : n \mapsto n^3$ has fixpoints $\{0, 1\}$

2. every state transformation *f* is a fixpoint of $\Phi_2 : (\Sigma \dashrightarrow \Sigma) \rightarrow (\Sigma \dashrightarrow \Sigma) : f \mapsto f$

Solution: uniqueness guaranteed by choosing a special fixpoint

Characterisation of $fix(\Phi)$

- Let $b \in BExp$ and $c \in Cmd$
- Let $\Phi(f) := \operatorname{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \operatorname{id}_{\Sigma})$
- Let $f_0 : \Sigma \dashrightarrow \Sigma$ be a fixpoint of Φ , i.e., $\Phi(f_0) = f_0$
- Given some initial state $\sigma_0 \in \Sigma$, we will distinguish the following cases:
 - 1. loop while *b* do *c* end terminates after *n* iterations ($n \in \mathbb{N}$)
 - 2. body *c* diverges in the *n*-th iteration (as it contains a non-terminating while statement)
 - 3. loop while *b* do *c* end itself diverges

Case 1: Termination of Loop

- Loop while b do c end terminates after n iterations ($n \in \mathbb{N}$)
- Formally: there exist $\sigma_1, \ldots, \sigma_n \in \Sigma$ such that

$$\mathfrak{B}\llbracket b \rrbracket \sigma_i = \begin{cases} \text{true} & \text{if } 0 \leq i < n \\ \text{false} & \text{if } i = n \end{cases} \quad \text{and} \\ \mathfrak{C}\llbracket c \rrbracket \sigma_i = \sigma_{i+1} \qquad \qquad \text{for every } 0 \leq i < n \end{cases}$$

• Now the definition $\Phi(f) := \operatorname{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \operatorname{id}_{\Sigma})$ implies, for every $0 \le i < n$,

$$\begin{aligned} \Phi(f_0)(\sigma_i) &= (f_0 \circ \mathfrak{C}[\![c]\!])(\sigma_i) & \text{since } \mathfrak{B}[\![b]\!]\sigma_i = \text{true} \\ &= f_0(\sigma_{i+1}) & \text{and} \\ \Phi(f_0)(\sigma_n) &= \sigma_n & \text{since } \mathfrak{B}[\![b]\!]\sigma_n = \text{false} \end{aligned}$$

• Since $\Phi(f_0) = f_0$ it follows that

$$f_0(\sigma_i) = \begin{cases} f_0(\sigma_{i+1}) & \text{if } 0 \le i < n \\ \sigma_n & \text{if } i = n \end{cases}$$

and hence

$$f_0(\sigma_0) = f_0(\sigma_1) = \dots f_0(\sigma_n) = \sigma_n$$

 \Rightarrow All fixpoints f_0 coincide on σ_0 (with result σ_n)!

 16 of 24
 Semantics and Verification of Software

 Summer Semester 2015
 Lecture 6: Denotational Semantics of WHILE I (The Approach)

Case 2: Divergence of Body

• Body *c* diverges in the *n*-th iteration

(since it contains a non-terminating while statement)

• Formally: there exist $\sigma_1, \ldots, \sigma_{n-1} \in \Sigma$ such that

$$\mathfrak{B}\llbracket b \rrbracket \sigma_i = \text{true} \qquad \text{for every } 0 \le i < n \text{ and} \\ \mathfrak{C}\llbracket c \rrbracket \sigma_i = \begin{cases} \sigma_{i+1} & \text{if } 0 \le i \le n-2 \\ \text{undefined} & \text{if } i = n-1 \end{cases}$$

• Just as in the previous case (setting $\sigma_n :=$ undefined) it follows that

 $f_0(\sigma_0) =$ undefined

 \Rightarrow Again all fixpoints f_0 coincide on σ_0 (with undefined result)!

Case 3: Divergence of Loop

- Loop while *b* do *c* end diverges
- Formally: there exist $\sigma_1, \sigma_2, \ldots \in \Sigma$ such that

 $\mathfrak{B}[\![b]\!]\sigma_i = true \text{ and } \mathfrak{C}[\![c]\!]\sigma_i = \sigma_{i+1} \text{ for every } i \in \mathbb{N}$

• Here only derivable:

$$f_0(\sigma_0) = f_0(\sigma_i)$$
 for every $i \in \mathbb{N}$

 \Rightarrow Value of $f_0(\sigma_0)$ not determined!

Summary

- For $\Phi(f_0) = f_0$ and initial state $\sigma_0 \in \Sigma$, case distinction yields:
- 1. Loop while *b* do *c* end terminates after *n* iterations ($n \in \mathbb{N}$) $\Rightarrow f_0(\sigma_0) = \sigma_n$
- 2. Body *c* diverges in the *n*-th iteration

 \Rightarrow *f*₀(σ_0) = undefined

3. Loop while b do c end diverges

 \Rightarrow no condition on f_0 (only $f_0(\sigma_0) = f_0(\sigma_i)$ for every $i \in \mathbb{N}$)

Not surprising since, e.g., for the loop while true do skip end every f : Σ --→ Σ is a fixpoint:

 $\Phi(f) = \mathsf{cond}(\mathfrak{B}\llbracket\mathsf{true}\rrbracket, f \circ \mathfrak{C}\llbracket\mathsf{skip}\rrbracket, \mathsf{id}_{\Sigma}) = f$

• On the other hand, our operational understanding requires, for every $\sigma_0 \in \Sigma$,

```
\mathfrak{C}[\![ \texttt{while true do skip end} ]\!] \sigma_0 = \mathsf{undefined}
```

Conclusion

fix(Φ) is the least defined fixpoint of Φ .

 19 of 24
 Semantics and Verification of Software

 Summer Semester 2015
 Lecture 6: Denotational Semantics of WHILE I (The Approach)

Making It Precise I

To use fixpoint theory, the notion of "least defined" has to be made precise.

• Given $f, g : \Sigma \dashrightarrow \Sigma$, let

$$\mathbf{f} \sqsubseteq \mathbf{g} \iff \text{ for every } \sigma, \sigma' \in \Sigma : \mathbf{f}(\sigma) = \sigma' \Rightarrow \mathbf{g}(\sigma) = \sigma'$$

(g is "at least as defined" as f)

Equivalent to requiring

 $graph(f) \subseteq graph(g)$

where

```
graph(h) := \{(\sigma, \sigma') \mid \sigma \in \Sigma, \sigma' = h(\sigma) \text{ defined}\} \subseteq \Sigma \times \Sigma
for every h : \Sigma \dashrightarrow \Sigma
```


Making It Precise II

Example 6.4

Let $x \in Var$ be fixed, and let $f_0, f_1, f_2, f_3 : \Sigma \dashrightarrow \Sigma$ be given by

$$f_0(\sigma) := \text{undefined}$$

$$f_1(\sigma) := \begin{cases} \sigma & \text{if } \sigma(x) \text{ even} \\ \text{undefined} & \text{otherwise} \end{cases}$$

$$f_2(\sigma) := \begin{cases} \sigma & \text{if } \sigma(x) \text{ odd} \\ \text{undefined} & \text{otherwise} \end{cases}$$

$$f_3(\sigma) := \sigma$$

This implies $f_0 \sqsubseteq f_1 \sqsubseteq f_3$, $f_0 \sqsubseteq f_2 \sqsubseteq f_3$, $f_1 \nvDash f_2$, and $f_2 \nvDash f_1$

Characterisation of $fix(\Phi)$ I

Now fix(Φ) can be characterised by:
fix(Φ) is a fixpoint of Φ, i.e.,

 $\Phi(\mathsf{fix}(\Phi)) = \mathsf{fix}(\Phi)$

• fix(Φ) is minimal with respect to \sqsubseteq , i.e., for every $f_0 : \Sigma \dashrightarrow \Sigma$ such that $\Phi(f_0) = f_0$, fix(Φ) $\sqsubseteq f_0$

Example 6.5

For while true do skip end we obtain for every $f : \Sigma \dashrightarrow \Sigma$:

 $\Phi(f) = \operatorname{cond}(\mathfrak{B}\llbracket\operatorname{true}\rrbracket, f \circ \mathfrak{C}\llbracket\operatorname{skip}\rrbracket, \operatorname{id}_{\Sigma}) = f$

 $\Rightarrow fix(\Phi) = f_{\emptyset}$ where $f_{\emptyset}(\sigma) :=$ undefined for every $\sigma \in \Sigma$ (that is, graph $(f_{\emptyset}) = \emptyset$)

Characterisation of $fix(\Phi)$ II

Goals:

- Prove existence of $fix(\Phi)$ for $\Phi(f) = cond(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], id_{\Sigma})$
- Show how it can be "computed" (more exactly: approximated)

Sufficient conditions:

on domain $\Sigma \dashrightarrow \Sigma$: chain-complete partial order on function Φ : monotonicity and continuity

