

Semantics and Verification of Software

Summer Semester 2015

Lecture 6: Denotational Semantics of WHILE I (The Approach)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Outline of Lecture 6

The Denotational Approach

Denotational Semantics of Expressions

Denotational Semantics of Statements

Characterisation of $fix(\Phi)$

Making It Precise

Denotational Semantics of WHILE

Primary aspect of a program: its "effect", i.e., input/output behavior

Denotational Semantics of WHILE

- Primary aspect of a program: its "effect", i.e., input/output behavior
- In operational semantics: indirect definition of semantic functional

$$\mathfrak{O}[\![.]\!]: \mathit{Cmd} \to (\Sigma \dashrightarrow \Sigma)$$

by execution relation

Denotational Semantics of WHILE

- Primary aspect of a program: its "effect", i.e., input/output behavior
- In operational semantics: indirect definition of semantic functional

$$\mathfrak{O}[\![.]\!]: \mathit{Cmd} \to (\Sigma \dashrightarrow \Sigma)$$

by execution relation

- Now: abstract from operational details
- Denotational semantics: direct definition of program effect by induction on its syntactic structure

Denotational Semantics of Expressions

Outline of Lecture 6

The Denotational Approach

Denotational Semantics of Expressions

Denotational Semantics of Statements

Characterisation of $fix(\Phi)$

Making It Precise

Denotational Semantics of Expressions

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 6.1 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,

$$\mathfrak{A}[\![.]\!]: \mathsf{AExp} \to (\Sigma \to \mathbb{Z}),$$

is given by:

$$\mathfrak{A}\llbracket z \rrbracket \sigma := z \qquad \mathfrak{A}\llbracket a_1 + a_2 \rrbracket \sigma := \mathfrak{A}\llbracket a_1 \rrbracket \sigma + \mathfrak{A}\llbracket a_2 \rrbracket \sigma \\
\mathfrak{A}\llbracket x \rrbracket \sigma := \sigma(x) \qquad \mathfrak{A}\llbracket a_1 - a_2 \rrbracket \sigma := \mathfrak{A}\llbracket a_1 \rrbracket \sigma - \mathfrak{A}\llbracket a_2 \rrbracket \sigma \\
\mathfrak{A}\llbracket a_1 + a_2 \rrbracket \sigma := \mathfrak{A}\llbracket a_1 \rrbracket \sigma \cdot \mathfrak{A}\llbracket a_2 \rrbracket \sigma$$

Denotational Semantics of Expressions

Semantics of Boolean Expressions

Definition 6.2 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions is given by

$$\mathfrak{B}\llbracket t \rrbracket \sigma := t$$

$$\mathfrak{B}\llbracket t \rrbracket \sigma := t$$

$$\mathfrak{B}\llbracket a_1 = a_2 \rrbracket \sigma := \begin{cases} \text{true} & \text{if } \mathfrak{A}\llbracket a_1 \rrbracket \sigma = \mathfrak{A}\llbracket a_2 \rrbracket \sigma \\ \text{false} & \text{otherwise} \end{cases}$$

$$\mathfrak{B}\llbracket a_1 > a_2 \rrbracket \sigma := \begin{cases} \text{true} & \text{if } \mathfrak{A}\llbracket a_1 \rrbracket \sigma = \mathfrak{A}\llbracket a_2 \rrbracket \sigma \\ \text{false} & \text{otherwise} \end{cases}$$

$$\mathfrak{B}\llbracket a_1 > a_2 \rrbracket \sigma := \begin{cases} \text{true} & \text{if } \mathfrak{A}\llbracket a_1 \rrbracket \sigma > \mathfrak{A}\llbracket a_2 \rrbracket \sigma \\ \text{false} & \text{otherwise} \end{cases}$$

$$\mathfrak{B}\llbracket b_1 > b_2 \rrbracket \sigma := \begin{cases} \text{true} & \text{if } \mathfrak{B}\llbracket b_1 \rrbracket \sigma = \mathfrak{B}\llbracket b_2 \rrbracket \sigma = \text{true} \\ \text{false} & \text{otherwise} \end{cases}$$

$$\mathfrak{B}\llbracket b_1 \lor b_2 \rrbracket \sigma := \begin{cases} \text{false} & \text{if } \mathfrak{B}\llbracket b_1 \rrbracket \sigma = \mathfrak{B}\llbracket b_2 \rrbracket \sigma = \text{false} \\ \text{true} & \text{otherwise} \end{cases}$$

Outline of Lecture 6

The Denotational Approach

Denotational Semantics of Expressions

Denotational Semantics of Statements

Characterisation of $fix(\Phi)$

Making It Precise

The Goal

Now: semantic functional

$$\mathfrak{C}[\![.]\!]:\textit{Cmd} \to (\Sigma \dashrightarrow \Sigma)$$

The Goal

Now: semantic functional

$$\mathfrak{C}[\![.]\!]: Cmd \rightarrow (\Sigma \dashrightarrow \Sigma)$$

Same type as operational functional

$$\mathfrak{O}$$
[.] : $Cmd \rightarrow (\Sigma \dashrightarrow \Sigma)$

(in fact, both will turn out to be the same

⇒ equivalence of operational and denotational semantics)

Auxiliary Functions

Inductive definition of $\mathfrak{C}[.]$ employs following auxiliary functions:

• identity on states: $id_{\Sigma} : \Sigma \dashrightarrow \Sigma : \sigma \mapsto \sigma$

Auxiliary Functions

Inductive definition of $\mathfrak{C}[\cdot]$ employs following auxiliary functions:

- identity on states: $id_{\Sigma} : \Sigma \longrightarrow \Sigma : \sigma \mapsto \sigma$
- (strict) composition of partial state transformations:

$$\circ: (\Sigma \dashrightarrow \Sigma) \times (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma)$$

where, for every $f, g : \Sigma \dashrightarrow \Sigma$ and $\sigma \in \Sigma$,

$$(g \circ f)(\sigma) := egin{cases} g(f(\sigma)) & \text{if } f(\sigma) \text{ defined} \\ \text{undefined} & \text{otherwise} \end{cases}$$

Auxiliary Functions

Inductive definition of $\mathfrak{C}[\cdot]$ employs following auxiliary functions:

- identity on states: $id_{\Sigma} : \Sigma \longrightarrow \Sigma : \sigma \mapsto \sigma$
- (strict) composition of partial state transformations:

$$\circ: (\Sigma \dashrightarrow \Sigma) \times (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma)$$

where, for every $f, g : \Sigma \dashrightarrow \Sigma$ and $\sigma \in \Sigma$,

$$(g \circ f)(\sigma) := \begin{cases} g(f(\sigma)) & \text{if } f(\sigma) \text{ defined} \\ \text{undefined} & \text{otherwise} \end{cases}$$

semantic conditional.

$$\mathsf{cond} : (\Sigma \to \mathbb{B}) \times (\Sigma \dashrightarrow \Sigma) \times (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma)$$

where, for every $p : \Sigma \to \mathbb{B}$, $f, g : \Sigma \dashrightarrow \Sigma$, and $\sigma \in \Sigma$,

$$\operatorname{\mathsf{cond}}(p,f,g)(\sigma) := egin{cases} f(\sigma) & \text{if } p(\sigma) = \operatorname{\mathsf{true}} \\ g(\sigma) & \text{otherwise} \end{cases}$$

Semantics of Statements I

Definition 6.3 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

$$\mathfrak{C}[\![.]\!]: \mathit{Cmd} \to (\Sigma \dashrightarrow \Sigma),$$

is given by:

$$egin{aligned} & egin{aligned} & egi$$

where $\Phi: (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma) : f \mapsto \mathsf{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \mathsf{id}_{\Sigma})$

Semantics of Statements II

Remarks:

- Definition of $\mathfrak{C}[c]$ given by induction on syntactic structure of $c \in Cmd$
 - in particular, $\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!]$ only refers to $\mathfrak{B}[\![b]\!]$ and $\mathfrak{C}[\![c]\!]$ (and not to $\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!]$ again)
 - note difference to $\mathfrak{O}[\![c]\!]$:

$$\frac{\langle \textbf{\textit{b}}, \sigma \rangle \rightarrow \mathsf{true} \ \langle \textbf{\textit{c}}, \sigma \rangle \rightarrow \sigma' \ \langle \mathsf{while} \ \textbf{\textit{b}} \ \mathsf{do} \ \textbf{\textit{c}}, \sigma' \rangle \rightarrow \sigma''}{\langle \mathsf{while} \ \textbf{\textit{b}} \ \mathsf{do} \ \textbf{\textit{c}} \ \mathsf{end}, \sigma \rangle \rightarrow \sigma''}$$

Semantics of Statements II

Remarks:

- Definition of $\mathfrak{C}[c]$ given by induction on syntactic structure of $c \in Cmd$
 - in particular, $\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!]$ only refers to $\mathfrak{B}[\![b]\!]$ and $\mathfrak{C}[\![c]\!]$ (and not to $\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!]$ again)
 - note difference to $\mathfrak{O}[c]$:

$$\frac{\langle \textbf{\textit{b}}, \sigma \rangle \rightarrow \mathsf{true} \ \langle \textbf{\textit{c}}, \sigma \rangle \rightarrow \sigma' \ \langle \mathsf{while} \ \textbf{\textit{b}} \ \mathsf{do} \ \textbf{\textit{c}}, \sigma' \rangle \rightarrow \sigma''}{\langle \mathsf{while} \ \textbf{\textit{b}} \ \mathsf{do} \ \textbf{\textit{c}} \ \mathsf{end}, \sigma \rangle \rightarrow \sigma''}$$

• In $\mathfrak{C}[c_1; c_2] := \mathfrak{C}[c_2] \circ \mathfrak{C}[c_1]$, function composition \circ has to be strict since non-termination of c_1 implies non-termination of $c_1; c_2$

Semantics of Statements II

Remarks:

- Definition of $\mathfrak{C}[c]$ given by induction on syntactic structure of $c \in Cmd$
 - in particular, $\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!]$ only refers to $\mathfrak{B}[\![b]\!]$ and $\mathfrak{C}[\![c]\!]$ (and not to $\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!]$ again)
 - note difference to $\mathfrak{O}[c]$:

$$\frac{\langle \textbf{\textit{b}}, \sigma \rangle \rightarrow \mathsf{true} \ \langle \textbf{\textit{c}}, \sigma \rangle \rightarrow \sigma' \ \langle \mathsf{while} \ \textbf{\textit{b}} \ \mathsf{do} \ \textbf{\textit{c}}, \sigma' \rangle \rightarrow \sigma''}{\langle \mathsf{while} \ \textbf{\textit{b}} \ \mathsf{do} \ \textbf{\textit{c}} \ \mathsf{end}, \sigma \rangle \rightarrow \sigma''}$$

- In $\mathfrak{C}[c_1; c_2] := \mathfrak{C}[c_2] \circ \mathfrak{C}[c_1]$, function composition \circ has to be strict since non-termination of c_1 implies non-termination of c_1 ; c_2
- In C[while b do c end] := fix(Φ), fix denotes a fixpoint operator (which remains to be defined)
 - ⇒ "fixpoint semantics"

Semantics of Statements II

Remarks:

- Definition of $\mathfrak{C}[c]$ given by induction on syntactic structure of $c \in Cmd$
 - in particular, $\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!]$ only refers to $\mathfrak{B}[\![b]\!]$ and $\mathfrak{C}[\![c]\!]$ (and not to $\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!]$ again)
 - note difference to $\mathfrak{O}[c]$:

$$\frac{\langle \textbf{\textit{b}}, \sigma \rangle \rightarrow \mathsf{true} \ \langle \textbf{\textit{c}}, \sigma \rangle \rightarrow \sigma' \ \langle \mathsf{while} \ \textbf{\textit{b}} \ \mathsf{do} \ \textbf{\textit{c}}, \sigma' \rangle \rightarrow \sigma''}{\langle \mathsf{while} \ \textbf{\textit{b}} \ \mathsf{do} \ \textbf{\textit{c}} \ \mathsf{end}, \sigma \rangle \rightarrow \sigma''}$$

- In $\mathfrak{C}[c_1; c_2] := \mathfrak{C}[c_2] \circ \mathfrak{C}[c_1]$, function composition \circ has to be strict since non-termination of c_1 implies non-termination of c_1 ; c_2
- In C[while b do c end] := fix(Φ), fix denotes a fixpoint operator (which remains to be defined)
 - ⇒ "fixpoint semantics"

But: why fixpoints?

Why Fixpoints?

Goal: preserve validity of equivalence

 $\mathfrak{C}[\![\mathtt{while}\ b\ \mathtt{do}\ c\ \mathtt{end}]\!] \stackrel{(*)}{=} \mathfrak{C}[\![\mathtt{if}\ b\ \mathtt{then}\ c; \mathtt{while}\ b\ \mathtt{do}\ c\ \mathtt{end}\ \mathtt{else}\ \mathtt{skip}\ \mathtt{end}]\!]$ (cf. Lemma 4.3)

Why Fixpoints?

Goal: preserve validity of equivalence

```
\mathbb{C}[while \ b \ do \ c \ end] \stackrel{(*)}{=} \mathbb{C}[if \ b \ then \ c; while \ b \ do \ c \ end \ else \ skip \ end] (cf. Lemma 4.3)
```

Using the known parts of Definition 6.3, we obtain:

```
\mathfrak{C}\llbracket \text{while } b \text{ do } c \text{ end} \rrbracket
```


Why Fixpoints?

Goal: preserve validity of equivalence

```
\mathfrak{C}[\![ \text{while } b \text{ do } c \text{ end} ]\!] \stackrel{(*)}{=} \mathfrak{C}[\![ \text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end} ]\!] (cf. Lemma 4.3)
```

• Using the known parts of Definition 6.3, we obtain:

```
\mathfrak{C}[\![ \text{while } b \text{ do } c \text{ end} ]\!]
\stackrel{(*)}{=} \mathfrak{C}[\![ \text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end} ]\!]
```


Semantics and Verification of Software

Why Fixpoints?

Goal: preserve validity of equivalence

 $\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!] \stackrel{(*)}{=} \mathfrak{C}[\![\text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end}]\!]$ (cf. Lemma 4.3)

• Using the known parts of Definition 6.3, we obtain:

```
 \overset{(*)}{=} \quad \mathfrak{C}[\text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end}] 
 \overset{(*)}{=} \quad \mathfrak{cond}(\mathfrak{B}[b], \mathfrak{C}[c; \text{while } b \text{ do } c \text{ end}], \mathfrak{C}[\text{skip}])
```


Why Fixpoints?

Goal: preserve validity of equivalence

 $\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!] \stackrel{(*)}{=} \mathfrak{C}[\![\text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end}]\!]$ (cf. Lemma 4.3)

Using the known parts of Definition 6.3, we obtain:

```
\mathfrak{C}[\![\!]\!] while b do c end [\![\!]\!] end [\![\!]\!] \mathfrak{C}[\![\!]\!] then c; while b do c end else skip end [\![\!]\!] cond [\![\![\![\!]\!]\!] cond [\![\![\![\![\!]\!]\!]\!] cond [\![\![\![\![\!]\!]\!]\!] cond [\![\![\![\![\![\!]\!]\!]\!]\!] cond [\![\![\![\![\![\!]\!]\!]\!]\!] [\![\![\![\![\![\!]\!]\!]\!]\!] cond [\![\![\![\![\![\![\!]\!]\!]\!]\!]\!] cond [\![\![\![\![\![\!]\!]\!]\!]\!]\!] while b do c end [\![\![\![\![\![\![\!]\!]\!]\!]\!]\!] cond [\![\![\![\![\![\![\!]\!]\!]\!]\!]\!]
```


Why Fixpoints?

Goal: preserve validity of equivalence

$$\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!] \stackrel{(*)}{=} \mathfrak{C}[\![\text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end}]\!]$$
 (cf. Lemma 4.3)

Using the known parts of Definition 6.3, we obtain:

```
\mathfrak{C}[while b do c end]
                           \mathfrak{C}[\text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end}]
                         \operatorname{cond}(\mathfrak{B}\llbracket b \rrbracket, \mathfrak{C}\llbracket c; \text{while } b \text{ do } c \text{ end} \rrbracket, \mathfrak{C}\llbracket \operatorname{skip} \rrbracket)
    \overset{\mathsf{Def. 6.3}}{=} \; \mathsf{cond}(\mathfrak{B}\llbracket b \rrbracket, \mathfrak{C}\llbracket \mathsf{while} \; b \; \mathsf{do} \; c \; \mathsf{end} \rrbracket \circ \mathfrak{C}\llbracket c \rrbracket, \mathsf{id}_{\Sigma})
```

• Abbreviating $f := \mathfrak{C}[while \ b \ do \ c \ end]$ this yields:

$$f = \mathsf{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \mathsf{id}_{\Sigma})$$

Why Fixpoints?

Goal: preserve validity of equivalence

$$\mathfrak{C}[\![ext{while } b ext{ do } c ext{ end}]\!] \stackrel{(*)}{=} \mathfrak{C}[\![ext{if } b ext{ then } c; ext{while } b ext{ do } c ext{ end else skip end}]$$
 (cf. Lemma 4.3)

• Using the known parts of Definition 6.3, we obtain:

```
 \overset{(*)}{=} \quad \mathfrak{C}[\![ \text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end}] ] 
 \overset{(*)}{=} \quad \mathfrak{C}[\![ \text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end}] ] 
 \overset{\text{Def. 6.3}}{=} \quad \mathfrak{cond}(\mathfrak{B}[\![ b ]\!], \mathfrak{C}[\![ c; \text{while } b \text{ do } c \text{ end}]\!], \mathfrak{C}[\![ \text{skip} ]\!]) 
 \overset{\text{Def. 6.3}}{=} \quad \mathfrak{cond}(\mathfrak{B}[\![ b ]\!], \mathfrak{C}[\![ \text{while } b \text{ do } c \text{ end}]\!] \circ \mathfrak{C}[\![ c ]\!], \mathsf{id}_{\Sigma})
```

• Abbreviating $f := \mathfrak{C}[while \ b \ do \ c \ end]$ this yields:

$$f = \operatorname{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \operatorname{id}_{\Sigma})$$

Hence f must be a solution of this recursive equation

Why Fixpoints?

Goal: preserve validity of equivalence

$$\mathfrak{C}[\![\text{while } b \text{ do } c \text{ end}]\!] \stackrel{(*)}{=} \mathfrak{C}[\![\text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end}]\!]$$
 (cf. Lemma 4.3)

Using the known parts of Definition 6.3, we obtain:

```
 \overset{(*)}{=} \quad \mathfrak{C}[\![ \text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end}] ] 
 \overset{(*)}{=} \quad \mathfrak{C}[\![ \text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ end else skip end}] ] 
 \overset{\text{Def. 6.3}}{=} \quad \mathfrak{cond}(\mathfrak{B}[\![ b ]\!], \mathfrak{C}[\![ c; \text{while } b \text{ do } c \text{ end}]\!], \mathfrak{C}[\![ \text{skip} ]\!]) 
 \overset{\text{Def. 6.3}}{=} \quad \mathfrak{cond}(\mathfrak{B}[\![ b ]\!], \mathfrak{C}[\![ \text{while } b \text{ do } c \text{ end}]\!] \circ \mathfrak{C}[\![ c ]\!], \mathsf{id}_{\Sigma})
```

• Abbreviating $f := \mathfrak{C}[while \ b \ do \ c \ end]$ this yields:

$$f = \mathsf{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \mathsf{id}_{\Sigma})$$

- Hence f must be a solution of this recursive equation
- In other words: f must be a fixpoint of the mapping

$$\Phi: (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma): f \mapsto \mathsf{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \mathsf{id}_{\Sigma})$$

(since the equation can be stated as $f = \Phi(f)$)

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:

Existence: there does not need to exist any fixpoint. Examples:

1. $\phi_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n+1$ has no fixpoint

2.
$$\Phi_1: (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma): f \mapsto \begin{cases} g_1 & \text{if } f = g_2 \\ g_2 & \text{otherwise} \end{cases}$$

has no fixpoint if $g_1 \neq g_2$

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:

Existence: there does not need to exist any fixpoint. Examples:

1. $\phi_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n+1$ has no fixpoint

2.
$$\Phi_1: (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma): f \mapsto \begin{cases} g_1 & \text{if } f = g_2 \\ g_2 & \text{otherwise} \end{cases}$$

has no fixpoint if $g_1 \neq g_2$

Solution: in our setting, fixpoints always exist

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:

Existence: there does not need to exist any fixpoint. Examples:

1. $\phi_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n+1$ has no fixpoint

2.
$$\Phi_1: (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma): f \mapsto \begin{cases} g_1 & \text{if } f = g_2 \\ g_2 & \text{otherwise} \end{cases}$$

has no fixpoint if $g_1 \neq g_2$

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:

- 1. $\phi_2: \mathbb{N} \to \mathbb{N}: n \mapsto n^3$ has fixpoints $\{0, 1\}$
- 2. every state transformation f is a fixpoint of $\Phi_2: (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma): f \mapsto f$

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:

Existence: there does not need to exist any fixpoint. Examples:

1. $\phi_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n+1$ has no fixpoint

2.
$$\Phi_1: (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma): f \mapsto \begin{cases} g_1 & \text{if } f = g_2 \\ g_2 & \text{otherwise} \end{cases}$$

has no fixpoint if $g_1 \neq g_2$

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:

- 1. $\phi_2: \mathbb{N} \to \mathbb{N}: n \mapsto n^3$ has fixpoints $\{0, 1\}$
- 2. every state transformation f is a fixpoint of $\Phi_2: (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma): f \mapsto f$

Solution: uniqueness guaranteed by choosing a special fixpoint

Outline of Lecture 6

The Denotational Approach

Denotational Semantics of Expressions

Denotational Semantics of Statements

Characterisation of $fix(\Phi)$

Making It Precise

Characterisation of $fix(\Phi)$

• Let $b \in BExp$ and $c \in Cmd$

Characterisation of $fix(\Phi)$

- Let $b \in BExp$ and $c \in Cmd$
- Let $\Phi(f) := \operatorname{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \operatorname{id}_{\Sigma})$

Characterisation of $fix(\Phi)$

- Let $b \in BExp$ and $c \in Cmd$
- Let $\Phi(f) := \operatorname{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \operatorname{id}_{\Sigma})$
- Let $f_0: \Sigma \longrightarrow \Sigma$ be a fixpoint of Φ , i.e., $\Phi(f_0) = f_0$

Semantics and Verification of Software

Characterisation of $fix(\Phi)$

- Let $b \in BExp$ and $c \in Cmd$
- Let $\Phi(f) := \operatorname{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \operatorname{id}_{\Sigma})$
- Let $f_0: \Sigma \longrightarrow \Sigma$ be a fixpoint of Φ , i.e., $\Phi(f_0) = f_0$
- Given some initial state $\sigma_0 \in \Sigma$, we will distinguish the following cases:
 - 1. loop while b do c end terminates after n iterations ($n \in \mathbb{N}$)
 - 2. body *c* diverges in the *n*-th iteration (as it contains a non-terminating while statement)
 - 3. loop while b do c end itself diverges

Case 1: Termination of Loop

• Loop while b do c end terminates after n iterations ($n \in \mathbb{N}$)

Case 1: Termination of Loop

- Loop while b do c end terminates after n iterations ($n \in \mathbb{N}$)
- Formally: there exist $\sigma_1, \ldots, \sigma_n \in \Sigma$ such that

$$\mathfrak{B}\llbracket b \rrbracket \sigma_i = egin{cases} ext{true} & ext{if } 0 \leq i < n \\ ext{false} & ext{if } i = n \end{cases}$$
 and $\mathfrak{C}\llbracket c \rrbracket \sigma_i = \sigma_{i+1}$ for every $0 \leq i < n$

Case 1: Termination of Loop

- Loop while b do c end terminates after n iterations $(n \in \mathbb{N})$
- Formally: there exist $\sigma_1, \ldots, \sigma_n \in \Sigma$ such that

$$\mathfrak{B}\llbracket b \rrbracket \sigma_i = egin{cases} ext{true} & ext{if } 0 \leq i < n \\ ext{false} & ext{if } i = n \end{cases}$$
 and $\mathfrak{C}\llbracket c \rrbracket \sigma_i = \sigma_{i+1}$ for every $0 \leq i < n$

• Now the definition $\Phi(f) := \operatorname{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \operatorname{id}_{\Sigma})$ implies, for every $0 \le i < n$,

$$\Phi(f_0)(\sigma_i) = (f_0 \circ \mathfrak{C}[\![c]\!])(\sigma_i)$$
 since $\mathfrak{B}[\![b]\!]\sigma_i = \text{true}$
= $f_0(\sigma_{i+1})$ and
 $\Phi(f_0)(\sigma_n) = \sigma_n$ since $\mathfrak{B}[\![b]\!]\sigma_n = \text{false}$

Case 1: Termination of Loop

- Loop while b do c end terminates after n iterations $(n \in \mathbb{N})$
- Formally: there exist $\sigma_1, \ldots, \sigma_n \in \Sigma$ such that

$$\mathfrak{B}[\![b]\!]\sigma_i = egin{cases} ext{true} & ext{if } 0 \leq i < n \\ ext{false} & ext{if } i = n \end{cases}$$
 and $\mathfrak{C}[\![c]\!]\sigma_i = \sigma_{i+1}$ for every $0 \leq i < n$

• Now the definition $\Phi(f) := \operatorname{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \operatorname{id}_{\Sigma})$ implies, for every $0 \le i < n$,

$$\Phi(f_0)(\sigma_i) = (f_0 \circ \mathfrak{C}[\![c]\!])(\sigma_i)$$
 since $\mathfrak{B}[\![b]\!]\sigma_i = \text{true}$
= $f_0(\sigma_{i+1})$ and
 $\Phi(f_0)(\sigma_n) = \sigma_n$ since $\mathfrak{B}[\![b]\!]\sigma_n = \text{false}$

• Since $\Phi(f_0) = f_0$ it follows that

$$f_0(\sigma_i) = \begin{cases} f_0(\sigma_{i+1}) & \text{if } 0 \leq i < n \\ \sigma_n & \text{if } i = n \end{cases}$$

and hence

$$f_0(\sigma_0) = f_0(\sigma_1) = \dots f_0(\sigma_n) = \sigma_n$$

Case 1: Termination of Loop

- Loop while b do c end terminates after n iterations $(n \in \mathbb{N})$
- Formally: there exist $\sigma_1, \ldots, \sigma_n \in \Sigma$ such that

$$\mathfrak{B}[\![b]\!]\sigma_i = egin{cases} ext{true} & ext{if } 0 \leq i < n \\ ext{false} & ext{if } i = n \end{cases}$$
 and $\mathfrak{C}[\![c]\!]\sigma_i = \sigma_{i+1}$ for every $0 \leq i < n$

• Now the definition $\Phi(f) := \operatorname{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \operatorname{id}_{\Sigma})$ implies, for every $0 \le i < n$,

$$\Phi(f_0)(\sigma_i) = (f_0 \circ \mathfrak{C}[\![c]\!])(\sigma_i)$$
 since $\mathfrak{B}[\![b]\!]\sigma_i = \text{true}$
= $f_0(\sigma_{i+1})$ and
 $\Phi(f_0)(\sigma_n) = \sigma_n$ since $\mathfrak{B}[\![b]\!]\sigma_n = \text{false}$

• Since $\Phi(f_0) = f_0$ it follows that

$$f_0(\sigma_i) = \begin{cases} f_0(\sigma_{i+1}) & \text{if } 0 \leq i < n \\ \sigma_n & \text{if } i = n \end{cases}$$

and hence

$$f_0(\sigma_0) = f_0(\sigma_1) = \dots f_0(\sigma_n) = \sigma_n$$

 \Rightarrow All fixpoints f_0 coincide on σ_0 (with result σ_n)!

Case 2: Divergence of Body

Body c diverges in the n-th iteration
 (since it contains a non-terminating while statement)

Case 2: Divergence of Body

- Body c diverges in the n-th iteration
 (since it contains a non-terminating while statement)
- Formally: there exist $\sigma_1, \ldots, \sigma_{n-1} \in \Sigma$ such that

$$\mathfrak{B}[\![b]\!]\sigma_i = \text{true}$$
 $\mathfrak{C}[\![c]\!]\sigma_i = \begin{cases} \sigma_{i+1} & \text{if } 0 \leq i \leq n-2 \\ \text{undefined} & \text{if } i = n-1 \end{cases}$

for every $0 \le i < n$ and

Case 2: Divergence of Body

- Body c diverges in the n-th iteration
 (since it contains a non-terminating while statement)
- Formally: there exist $\sigma_1, \ldots, \sigma_{n-1} \in \Sigma$ such that

$$\mathfrak{B}[\![b]\!]\sigma_i = ext{true}$$
 for every $0 \le i < n$ and $\mathfrak{C}[\![c]\!]\sigma_i = egin{cases} \sigma_{i+1} & \text{if } 0 \le i \le n-2 \\ \text{undefined} & \text{if } i=n-1 \end{cases}$

• Just as in the previous case (setting $\sigma_n := \text{undefined}$) it follows that

$$f_0(\sigma_0) = \text{undefined}$$

Case 2: Divergence of Body

- Body c diverges in the n-th iteration
 (since it contains a non-terminating while statement)
- Formally: there exist $\sigma_1, \ldots, \sigma_{n-1} \in \Sigma$ such that

$$\mathfrak{B}[\![b]\!]\sigma_i = ext{true}$$
 for every $0 \le i < n$ and $\mathfrak{C}[\![c]\!]\sigma_i = egin{cases} \sigma_{i+1} & \text{if } 0 \le i \le n-2 \\ \text{undefined} & \text{if } i=n-1 \end{cases}$

• Just as in the previous case (setting $\sigma_n := \text{undefined}$) it follows that

$$f_0(\sigma_0) = \text{undefined}$$

 \Rightarrow Again all fixpoints f_0 coincide on σ_0 (with undefined result)!

Case 3: Divergence of Loop

• Loop while b do c end diverges

Case 3: Divergence of Loop

- Loop while *b* do *c* end diverges
- Formally: there exist $\sigma_1, \sigma_2, \ldots \in \Sigma$ such that

$$\mathfrak{B}[\![b]\!]\sigma_i = \text{true}$$
 and $\mathfrak{C}[\![c]\!]\sigma_i = \sigma_{i+1}$ for every $i \in \mathbb{N}$

Case 3: Divergence of Loop

- Loop while *b* do *c* end diverges
- Formally: there exist $\sigma_1, \sigma_2, \ldots \in \Sigma$ such that

$$\mathfrak{B}[\![b]\!]\sigma_i = \text{true}$$
 and $\mathfrak{C}[\![c]\!]\sigma_i = \sigma_{i+1}$ for every $i \in \mathbb{N}$

Here only derivable:

$$f_0(\sigma_0) = f_0(\sigma_i)$$
 for every $i \in \mathbb{N}$

Case 3: Divergence of Loop

- Loop while b do c end diverges
- Formally: there exist $\sigma_1, \sigma_2, \ldots \in \Sigma$ such that

$$\mathfrak{B}[\![b]\!]\sigma_i = \text{true}$$
 and $\mathfrak{C}[\![c]\!]\sigma_i = \sigma_{i+1}$ for every $i \in \mathbb{N}$

Here only derivable:

$$f_0(\sigma_0) = f_0(\sigma_i)$$
 for every $i \in \mathbb{N}$

 \Rightarrow Value of $f_0(\sigma_0)$ not determined!

Summary

For $\Phi(f_0) = f_0$ and initial state $\sigma_0 \in \Sigma$, case distinction yields:

- 1. Loop while b do c end terminates after n iterations ($n \in \mathbb{N}$) $\Rightarrow f_0(\sigma_0) = \sigma_n$
- 2. Body *c* diverges in the *n*-th iteration
 - $\Rightarrow f_0(\sigma_0) = \text{undefined}$
- 3. Loop while b do c end diverges
 - \Rightarrow no condition on f_0 (only $f_0(\sigma_0) = f_0(\sigma_i)$ for every $i \in \mathbb{N}$)

Summary

For $\Phi(f_0) = f_0$ and initial state $\sigma_0 \in \Sigma$, case distinction yields:

- 1. Loop while b do c end terminates after n iterations ($n \in \mathbb{N}$) $\Rightarrow f_0(\sigma_0) = \sigma_n$
- 2. Body *c* diverges in the *n*-th iteration
 - $\Rightarrow f_0(\sigma_0) = \text{undefined}$
- 3. Loop while b do c end diverges
 - \Rightarrow no condition on f_0 (only $f_0(\sigma_0) = f_0(\sigma_i)$ for every $i \in \mathbb{N}$)
- Not surprising since, e.g., for the loop while true do skip end every $f: \Sigma \dashrightarrow \Sigma$ is a fixpoint:

$$\Phi(f) = \mathsf{cond}(\mathfrak{B}\llbracket\mathsf{true}
rbracket, f \circ \mathfrak{C}\llbracket\mathsf{skip}
rbracket, \mathsf{id}_{\Sigma}) = f$$

Summary

For $\Phi(f_0) = f_0$ and initial state $\sigma_0 \in \Sigma$, case distinction yields:

- 1. Loop while b do c end terminates after n iterations ($n \in \mathbb{N}$) $\Rightarrow f_0(\sigma_0) = \sigma_n$
- 2. Body *c* diverges in the *n*-th iteration
 - $\Rightarrow f_0(\sigma_0) = \text{undefined}$
- 3. Loop while b do c end diverges
 - \Rightarrow no condition on f_0 (only $f_0(\sigma_0) = f_0(\sigma_i)$ for every $i \in \mathbb{N}$)
- Not surprising since, e.g., for the loop while true do skip end every f : Σ --→ Σ is a fixpoint:

$$\Phi(f) = \mathsf{cond}(\mathfrak{B}\llbracket\mathsf{true}
rbracket, f \circ \mathfrak{C}\llbracket\mathsf{skip}
rbracket, \mathsf{id}_{\Sigma}) = f$$

• On the other hand, our operational understanding requires, for every $\sigma_0 \in \Sigma$,

$$\mathfrak{C}[\![ext{while true do skip end}]\!] \sigma_0 = ext{undefined}$$

Summary

For $\Phi(f_0) = f_0$ and initial state $\sigma_0 \in \Sigma$, case distinction yields:

- 1. Loop while b do c end terminates after n iterations ($n \in \mathbb{N}$) $\Rightarrow f_0(\sigma_0) = \sigma_n$
- 2. Body *c* diverges in the *n*-th iteration
 - $\Rightarrow f_0(\sigma_0) = \text{undefined}$
- 3. Loop while b do c end diverges
 - \Rightarrow no condition on f_0 (only $f_0(\sigma_0) = f_0(\sigma_i)$ for every $i \in \mathbb{N}$)
- Not surprising since, e.g., for the loop while true do skip end every f : Σ --→ Σ is a fixpoint:

$$\Phi(f) = \mathsf{cond}(\mathfrak{B}\llbracket\mathsf{true}
rbracket, f \circ \mathfrak{C}\llbracket\mathsf{skip}
rbracket, \mathsf{id}_{\Sigma}) = f$$

• On the other hand, our operational understanding requires, for every $\sigma_0 \in \Sigma$,

$$\mathfrak{C}[\![ext{while true do skip end}]\!] \sigma_0 = ext{undefined}$$

Conclusion

 $fix(\Phi)$ is the least defined fixpoint of Φ .

Outline of Lecture 6

The Denotational Approach

Denotational Semantics of Expressions

Denotational Semantics of Statements

Characterisation of $fix(\Phi)$

Making It Precise

Making It Precise I

To use fixpoint theory, the notion of "least defined" has to be made precise.

• Given $f, g : \Sigma \longrightarrow \Sigma$, let

$$f \sqsubseteq g \iff \text{for every } \sigma, \sigma' \in \Sigma : f(\sigma) = \sigma' \Rightarrow g(\sigma) = \sigma'$$

(g is "at least as defined" as f)

Making It Precise I

To use fixpoint theory, the notion of "least defined" has to be made precise.

• Given $f, g: \Sigma \longrightarrow \Sigma$, let

$$f \sqsubseteq g \iff \text{for every } \sigma, \sigma' \in \Sigma : f(\sigma) = \sigma' \Rightarrow g(\sigma) = \sigma'$$

(g is "at least as defined" as f)

Equivalent to requiring

$$graph(f) \subseteq graph(g)$$

where

$$graph(h) := \{(\sigma, \sigma') \mid \sigma \in \Sigma, \sigma' = h(\sigma) \text{ defined}\} \subseteq \Sigma \times \Sigma$$

for every $h: \Sigma \longrightarrow \Sigma$

Making It Precise II

Example 6.4

Let $x \in \mathit{Var}$ be fixed, and let $f_0, f_1, f_2, f_3 : \Sigma \dashrightarrow \Sigma$ be given by $f_0(\sigma) := \text{undefined}$ if $\sigma(x)$ even $f_1(\sigma) := \begin{cases} \sigma & \text{if } \sigma(x) \text{ even} \\ \text{undefined} & \text{otherwise} \end{cases}$ $f_2(\sigma) := \begin{cases} \sigma & \text{if } \sigma(x) \text{ odd} \\ \text{undefined} & \text{otherwise} \end{cases}$ $f_3(\sigma) := \sigma$

Making It Precise II

Example 6.4

Let $x \in Var$ be fixed, and let $f_0, f_1, f_2, f_3 : \Sigma \longrightarrow \Sigma$ be given by

$$f_0(\sigma) := ext{undefined}$$
 $f_1(\sigma) := \begin{cases} \sigma & \text{if } \sigma(x) \text{ even} \\ \text{undefined} & \text{otherwise} \end{cases}$
 $f_2(\sigma) := \begin{cases} \sigma & \text{if } \sigma(x) \text{ odd} \\ \text{undefined} & \text{otherwise} \end{cases}$
 $f_3(\sigma) := \sigma$

This implies $f_0 \sqsubseteq f_1 \sqsubseteq f_3$, $f_0 \sqsubseteq f_2 \sqsubseteq f_3$, $f_1 \not\sqsubseteq f_2$, and $f_2 \not\sqsubseteq f_1$

Characterisation of $fix(\Phi)$ I

Now $fix(\Phi)$ can be characterised by:

• $fix(\Phi)$ is a fixpoint of Φ , i.e.,

$$\Phi(\mathsf{fix}(\Phi)) = \mathsf{fix}(\Phi)$$

• fix(Φ) is minimal with respect to \sqsubseteq , i.e., for every $f_0: \Sigma \dashrightarrow \Sigma$ such that $\Phi(f_0) = f_0$, fix(Φ) $\sqsubseteq f_0$

Characterisation of $fix(\Phi)$ I

Now $fix(\Phi)$ can be characterised by:

• $fix(\Phi)$ is a fixpoint of Φ , i.e.,

$$\Phi(\mathsf{fix}(\Phi)) = \mathsf{fix}(\Phi)$$

• fix(Φ) is minimal with respect to \sqsubseteq , i.e., for every $f_0: \Sigma \dashrightarrow \Sigma$ such that $\Phi(f_0) = f_0$, fix(Φ) $\sqsubseteq f_0$

Example 6.5

For while true do skip end we obtain for every $f: \Sigma \dashrightarrow \Sigma$:

$$\Phi(f) = \operatorname{cond}(\mathfrak{B}\llbracket\operatorname{true}\rrbracket, f \circ \mathfrak{C}\llbracket\operatorname{skip}\rrbracket, \operatorname{id}_{\Sigma}) = f$$

Characterisation of $fix(\Phi)$ I

Now $fix(\Phi)$ can be characterised by:

fix(Φ) is a fixpoint of Φ, i.e.,

$$\Phi(\mathsf{fix}(\Phi)) = \mathsf{fix}(\Phi)$$

• fix(Φ) is minimal with respect to \sqsubseteq , i.e., for every $f_0: \Sigma \dashrightarrow \Sigma$ such that $\Phi(f_0) = f_0$, fix(Φ) $\sqsubseteq f_0$

Example 6.5

For while true do skip end we obtain for every $f: \Sigma \dashrightarrow \Sigma$:

$$\Phi(f) = \operatorname{cond}(\mathfrak{B}\llbracket\operatorname{true}\rrbracket, f \circ \mathfrak{C}\llbracket\operatorname{skip}\rrbracket, \operatorname{id}_{\Sigma}) = f$$

 \Rightarrow fix $(\Phi) = f_{\emptyset}$ where $f_{\emptyset}(\sigma) :=$ undefined for every $\sigma \in \Sigma$ (that is, graph $(f_{\emptyset}) = \emptyset$)

Characterisation of $fix(\Phi)$ II

Goals:

- Prove existence of $fix(\Phi)$ for $\Phi(f) = cond(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], id_{\Sigma})$
- Show how it can be "computed" (more exactly: approximated)

Characterisation of $fix(\Phi)$ II

Goals:

- Prove existence of $fix(\Phi)$ for $\Phi(f) = cond(\mathfrak{B}[b], f \circ \mathfrak{C}[c], id_{\Sigma})$
- Show how it can be "computed" (more exactly: approximated)

Sufficient conditions:

on domain $\Sigma \longrightarrow \Sigma$: chain-complete partial order on function Φ : monotonicity and continuity

