
Semantics and Verification of Software
Summer Semester 2015

Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Recap: Execution of Statements

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM

2 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Recap: Execution of Statements

Execution of Statements

Remember:
c ::= skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end ∈ Cmd

Definition (Execution relation for statements)

For c ∈ Cmd and σ, σ′ ∈ Σ, the execution relation 〈c, σ〉 → σ′ is defined by:

(skip)

〈skip, σ〉 → σ
(asgn)

〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2 end, σ〉 → σ′

(if-f)

〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2 end, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c end, σ〉 → σ

(wh-t)

〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c end, σ′〉 → σ′′

〈while b do c end, σ〉 → σ′′

3 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Recap: Execution of Statements

Determinism of Execution Relation

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever c ∈ Cmd and
σ, σ′, σ′′ ∈ Σ such that 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′, then σ′ = σ′′.

• How to prove this theorem?
• Idea:

– employ corresponding result for expressions (Lemma 3.6)
– use induction on the syntactic structure of c

• Instead: structural induction on derivation trees

4 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Functional of the Operational Semantics

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM

5 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Functional of the Operational Semantics

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.5) justifies the following
definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,

OJ.K : Cmd → (Σ 99K Σ),

assigns to every statement c ∈ Cmd a partial state transformation OJcK : Σ 99K Σ,
which is defined as follows:

OJcKσ :=

{
σ′ if 〈c, σ〉 → σ′ for some σ′ ∈ Σ
undefined otherwise

Remark: OJcKσ can indeed be undefined
(consider e.g. c = while true do skip end; see Corollary 3.4)

6 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Functional of the Operational Semantics

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.5) justifies the following
definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,

OJ.K : Cmd → (Σ 99K Σ),

assigns to every statement c ∈ Cmd a partial state transformation OJcK : Σ 99K Σ,
which is defined as follows:

OJcKσ :=

{
σ′ if 〈c, σ〉 → σ′ for some σ′ ∈ Σ
undefined otherwise

Remark: OJcKσ can indeed be undefined
(consider e.g. c = while true do skip end; see Corollary 3.4)

6 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Functional of the Operational Semantics

Equivalence of Statements

Underlying principle: two (syntactic) objects are considered (semantically)
equivalent if they have the same “meaning”
• finite automata: A1 ∼ A2 iff L(A1) = L(A2)

• context-free grammars: G1 ∼ G2 iff L(G1) = L(G2)

• Turing machines: T1 ∼ T2 iff both compute same function

Definition 4.2 (Operational equivalence)

Two statements c1, c2 ∈ Cmd are called (operationally) equivalent (notation: c1 ∼ c2)
iff

OJc1K = OJc2K.

Thus:
• c1 ∼ c2 iff OJc1Kσ = OJc2Kσ for every σ ∈ Σ

• In particular, OJc1Kσ is undefined iff OJc2Kσ is undefined

7 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Functional of the Operational Semantics

Equivalence of Statements

Underlying principle: two (syntactic) objects are considered (semantically)
equivalent if they have the same “meaning”
• finite automata: A1 ∼ A2 iff L(A1) = L(A2)

• context-free grammars: G1 ∼ G2 iff L(G1) = L(G2)

• Turing machines: T1 ∼ T2 iff both compute same function

Definition 4.2 (Operational equivalence)

Two statements c1, c2 ∈ Cmd are called (operationally) equivalent (notation: c1 ∼ c2)
iff

OJc1K = OJc2K.

Thus:
• c1 ∼ c2 iff OJc1Kσ = OJc2Kσ for every σ ∈ Σ

• In particular, OJc1Kσ is undefined iff OJc2Kσ is undefined

7 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Functional of the Operational Semantics

Equivalence of Statements

Underlying principle: two (syntactic) objects are considered (semantically)
equivalent if they have the same “meaning”
• finite automata: A1 ∼ A2 iff L(A1) = L(A2)

• context-free grammars: G1 ∼ G2 iff L(G1) = L(G2)

• Turing machines: T1 ∼ T2 iff both compute same function

Definition 4.2 (Operational equivalence)

Two statements c1, c2 ∈ Cmd are called (operationally) equivalent (notation: c1 ∼ c2)
iff

OJc1K = OJc2K.

Thus:
• c1 ∼ c2 iff OJc1Kσ = OJc2Kσ for every σ ∈ Σ

• In particular, OJc1Kσ is undefined iff OJc2Kσ is undefined

7 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Functional of the Operational Semantics

“Unwinding” of Loops

Simple application of statement equivalence: test of execution condition in a while
loop can be represented by an if statement

Lemma 4.3

For every b ∈ BExp and c ∈ Cmd,

while b do c end ∼ if b then c;while b do c end else skip end.

Proof.

on the board

8 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Functional of the Operational Semantics

“Unwinding” of Loops

Simple application of statement equivalence: test of execution condition in a while
loop can be represented by an if statement

Lemma 4.3

For every b ∈ BExp and c ∈ Cmd,

while b do c end ∼ if b then c;while b do c end else skip end.

Proof.

on the board

8 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Summary: Operational Semantics

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM

9 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Summary: Operational Semantics

Summary: Operational Semantics

• Formalized by evaluation/execution relations

• Inductively defined by derivation trees using structural operational rules
• Enables proofs about operational behaviour of programs using structural induction on

derivation trees
• Semantic functional characterizes complete input/output behavior of programs

10 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Summary: Operational Semantics

Summary: Operational Semantics

• Formalized by evaluation/execution relations
• Inductively defined by derivation trees using structural operational rules

• Enables proofs about operational behaviour of programs using structural induction on
derivation trees
• Semantic functional characterizes complete input/output behavior of programs

10 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Summary: Operational Semantics

Summary: Operational Semantics

• Formalized by evaluation/execution relations
• Inductively defined by derivation trees using structural operational rules
• Enables proofs about operational behaviour of programs using structural induction on

derivation trees

• Semantic functional characterizes complete input/output behavior of programs

10 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Summary: Operational Semantics

Summary: Operational Semantics

• Formalized by evaluation/execution relations
• Inductively defined by derivation trees using structural operational rules
• Enables proofs about operational behaviour of programs using structural induction on

derivation trees
• Semantic functional characterizes complete input/output behavior of programs

10 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Application: Compiler Correctness

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Application: Compiler Correctness

Compiler Correctness

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:
1. Definition of abstract machine
2. Definition of (operational) semantics of machine instructions
3. Definition of translation WHILE→ machine code (“compiler”)
4. Proof: semantics of generated machine code = semantics of original source code

12 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Application: Compiler Correctness

Compiler Correctness

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:
1. Definition of abstract machine
2. Definition of (operational) semantics of machine instructions
3. Definition of translation WHILE→ machine code (“compiler”)
4. Proof: semantics of generated machine code = semantics of original source code

12 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM

13 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

The Abstract Machine

Definition 4.4 (Abstract machine)

The abstract machine (AM) is given by
• programs P ∈ Code and instructions p:

P ::= p∗

p ::= PUSH(z) | PUSH(t) | ADD | SUB | MULT |
EQ | GT | NOT | AND | OR |
LOAD(x) | STO(x) | JMP(k) | JMPF(k)

(where z, k ∈ Z, t ∈ B, and x ∈ Var)

• configurations of the form 〈pc, e, σ〉 ∈ Cnf where
– pc ∈ Z is the program counter (i.e., address of next instruction to be executed)
– e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top right)
– σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Z× Stk × Σ)
• initial configurations of the form 〈0, ε, σ〉
• final configurations of the form 〈|P|, e, σ〉

14 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

The Abstract Machine

Definition 4.4 (Abstract machine)

The abstract machine (AM) is given by
• programs P ∈ Code and instructions p:

P ::= p∗

p ::= PUSH(z) | PUSH(t) | ADD | SUB | MULT |
EQ | GT | NOT | AND | OR |
LOAD(x) | STO(x) | JMP(k) | JMPF(k)

(where z, k ∈ Z, t ∈ B, and x ∈ Var)
• configurations of the form 〈pc, e, σ〉 ∈ Cnf where

– pc ∈ Z is the program counter (i.e., address of next instruction to be executed)
– e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top right)
– σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Z× Stk × Σ)

• initial configurations of the form 〈0, ε, σ〉
• final configurations of the form 〈|P|, e, σ〉

14 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

The Abstract Machine

Definition 4.4 (Abstract machine)

The abstract machine (AM) is given by
• programs P ∈ Code and instructions p:

P ::= p∗

p ::= PUSH(z) | PUSH(t) | ADD | SUB | MULT |
EQ | GT | NOT | AND | OR |
LOAD(x) | STO(x) | JMP(k) | JMPF(k)

(where z, k ∈ Z, t ∈ B, and x ∈ Var)
• configurations of the form 〈pc, e, σ〉 ∈ Cnf where

– pc ∈ Z is the program counter (i.e., address of next instruction to be executed)
– e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top right)
– σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Z× Stk × Σ)
• initial configurations of the form 〈0, ε, σ〉
• final configurations of the form 〈|P|, e, σ〉

14 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Semantics of AM-Code I

Definition 4.5 (Transition relation of AM)

For P = p0; . . . ;pn−1 ∈ Code and 0 ≤ pc < n, the transition relation B ⊆ Cnf × Cnf is given by
P ` 〈pc, e, σ〉 B 〈pc + 1, e : z, σ〉 if ppc = PUSH(z)
P ` 〈pc, e, σ〉 B 〈pc + 1, e : t, σ〉 if ppc = PUSH(t)

P ` 〈pc, e : z1 : z2, σ〉 B 〈pc + 1, e : (z1 + z2), σ〉 if ppc = ADD
P ` 〈pc, e : z1 : z2, σ〉 B 〈pc + 1, e : (z1 − z2), σ〉 if ppc = SUB
P ` 〈pc, e : z1 : z2, σ〉 B 〈pc + 1, e : (z1 · z2), σ〉 if ppc = MULT
P ` 〈pc, e : z1 : z2, σ〉 B 〈pc + 1, e : (z1 = z2), σ〉 if ppc = EQ
P ` 〈pc, e : z1 : z2, σ〉 B 〈pc + 1, e : (z1 > z2), σ〉 if ppc = GT

P ` 〈pc, e : t, σ〉 B 〈pc + 1, e : (¬t), σ〉 if ppc = NOT
P ` 〈pc, e : t1 : t2, σ〉 B 〈pc + 1, e : (t1 ∧ t2), σ〉 if ppc = AND
P ` 〈pc, e : t1 : t2, σ〉 B 〈pc + 1, e : (t1 ∨ t2), σ〉 if ppc = OR

P ` 〈pc, e, σ〉 B 〈pc + 1, e : σ(x), σ〉 if ppc = LOAD(x)
P ` 〈pc, e : z, σ〉 B 〈pc + 1, e, σ[x 7→ z]〉 if ppc = STO(x)

P ` 〈pc, e, σ〉 B 〈pc + k , e, σ〉 if ppc = JMP(k)
P ` 〈pc, e : true, σ〉 B 〈pc + 1, e, σ〉 if ppc = JMPF(k)

P ` 〈pc, e : false, σ〉 B 〈pc + k , e, σ〉 if ppc = JMPF(k)

15 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Semantics of AM-Code II

Corollary 4.6

B is not total, i.e., there exists γ ∈ Cnf such that

γ 6Bγ′

for all γ′ ∈ Cnf

Proof.

Possible cases:
• γ final (that is, γ = 〈|P|, e, σ〉)
• γ stuck

– e.g., γ = 〈pc, 1, σ〉 with ppc = ADD or ppc = JMPF(k)
– or γ = 〈pc, e, σ〉 with pc /∈ {0, . . . , |P|}

16 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Semantics of AM-Code II

Corollary 4.6

B is not total, i.e., there exists γ ∈ Cnf such that

γ 6Bγ′

for all γ′ ∈ Cnf

Proof.

Possible cases:
• γ final (that is, γ = 〈|P|, e, σ〉)
• γ stuck

– e.g., γ = 〈pc, 1, σ〉 with ppc = ADD or ppc = JMPF(k)
– or γ = 〈pc, e, σ〉 with pc /∈ {0, . . . , |P|}

16 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Alternative Choices

Remark: more realistic machine architectures
• Variables referenced by address (and not by name)

– configurations 〈pc, e, µ〉 with memory µ ∈ (N→ Z)
– LOAD(x)/STO(x) replaced by LOAD(m)/STO(m) (where m ∈ N)

(requires symbol table for translation)
• Registers for storing intermediate values

(in place of evaluation stack e; involves register allocation)

17 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations I

Definition 4.7 (AM computations)

• A finite computation is a finite configuration sequence of the form γ0, γ1, . . . , γk where
k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}

• If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is called terminating
• A looping computation is an infinite configuration sequence of the form γ0, γ1, γ2, . . . where
γi B γi+1 for each i ∈ N

Note: according to (the proof of) Corollary 4.6, a terminating computation may end in
a final or in a stuck configuration

18 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations I

Definition 4.7 (AM computations)

• A finite computation is a finite configuration sequence of the form γ0, γ1, . . . , γk where
k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}
• If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is called terminating

• A looping computation is an infinite configuration sequence of the form γ0, γ1, γ2, . . . where
γi B γi+1 for each i ∈ N

Note: according to (the proof of) Corollary 4.6, a terminating computation may end in
a final or in a stuck configuration

18 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations I

Definition 4.7 (AM computations)

• A finite computation is a finite configuration sequence of the form γ0, γ1, . . . , γk where
k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}
• If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is called terminating
• A looping computation is an infinite configuration sequence of the form γ0, γ1, γ2, . . . where
γi B γi+1 for each i ∈ N

Note: according to (the proof of) Corollary 4.6, a terminating computation may end in
a final or in a stuck configuration

18 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations I

Definition 4.7 (AM computations)

• A finite computation is a finite configuration sequence of the form γ0, γ1, . . . , γk where
k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}
• If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is called terminating
• A looping computation is an infinite configuration sequence of the form γ0, γ1, γ2, . . . where
γi B γi+1 for each i ∈ N

Note: according to (the proof of) Corollary 4.6, a terminating computation may end in
a final or in a stuck configuration

18 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉

B 〈1, 3, σ〉B 〈2, 3 : 1, σ〉B 〈3, 4, σ〉B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉B 〈1, true, σ〉B 〈2, ε, σ〉B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉B 〈1, 3, σ〉

B 〈2, 3 : 1, σ〉B 〈3, 4, σ〉B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉B 〈1, true, σ〉B 〈2, ε, σ〉B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉B 〈1, 3, σ〉B 〈2, 3 : 1, σ〉

B 〈3, 4, σ〉B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉B 〈1, true, σ〉B 〈2, ε, σ〉B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉B 〈1, 3, σ〉B 〈2, 3 : 1, σ〉B 〈3, 4, σ〉

B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉B 〈1, true, σ〉B 〈2, ε, σ〉B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉B 〈1, 3, σ〉B 〈2, 3 : 1, σ〉B 〈3, 4, σ〉B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉B 〈1, true, σ〉B 〈2, ε, σ〉B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉B 〈1, 3, σ〉B 〈2, 3 : 1, σ〉B 〈3, 4, σ〉B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉B 〈1, true, σ〉B 〈2, ε, σ〉B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉B 〈1, 3, σ〉B 〈2, 3 : 1, σ〉B 〈3, 4, σ〉B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉

B 〈1, true, σ〉B 〈2, ε, σ〉B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉B 〈1, 3, σ〉B 〈2, 3 : 1, σ〉B 〈3, 4, σ〉B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉B 〈1, true, σ〉

B 〈2, ε, σ〉B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉B 〈1, 3, σ〉B 〈2, 3 : 1, σ〉B 〈3, 4, σ〉B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉B 〈1, true, σ〉B 〈2, ε, σ〉

B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉B 〈1, 3, σ〉B 〈2, 3 : 1, σ〉B 〈3, 4, σ〉B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉B 〈1, true, σ〉B 〈2, ε, σ〉B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉B 〈1, 3, σ〉B 〈2, 3 : 1, σ〉B 〈3, 4, σ〉B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉B 〈1, true, σ〉B 〈2, ε, σ〉B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Properties of AM

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM

20 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Properties of AM

A New Inductive Principle

Application: Finite computations (Def. 4.7)

Definition: a finite computation γ0, γ1, . . . , γk has length k
Induction base: property holds for all computations of length 0
Induction hypothesis: property holds for all computations of length ≤ k
Induction step: property holds for all computations of length k + 1

21 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Properties of AM

Application: Extension of Code and Stack

Lemma 4.9

If P ` 〈pc, e, σ〉B∗ 〈pc′, e′, σ′〉, then

P1; P; P2 ` 〈|P1| + pc, e0 : e, σ〉B∗ 〈|P1| + pc′, e0 : e′, σ′〉
for all P1,P2 ∈ Code and e0 ∈ Stk.

Interpretation: both the code and the stack component can be extended without
actually changing the behaviour of the machine

Proof.

by induction on the length of the computation (on the board)

22 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Properties of AM

Application: Extension of Code and Stack

Lemma 4.9

If P ` 〈pc, e, σ〉B∗ 〈pc′, e′, σ′〉, then

P1; P; P2 ` 〈|P1| + pc, e0 : e, σ〉B∗ 〈|P1| + pc′, e0 : e′, σ′〉
for all P1,P2 ∈ Code and e0 ∈ Stk.

Interpretation: both the code and the stack component can be extended without
actually changing the behaviour of the machine

Proof.

by induction on the length of the computation (on the board)

22 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Properties of AM

Another Property: Determinism

Lemma 4.10

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,

γ B γ′ and γ B γ′′ imply γ′ = γ′′.

Proof (Idea).

• Instruction to be executed is unambiguously given by program counter
• Topmost stack entries and storage state then yield unique successor configuration

Thus the following function is well defined:

Definition 4.11 (Semantics of AM)

The semantics of an AM program is given by MJ.K : Code→ (Σ 99K Σ) as follows:

MJPKσ :=

{
σ′ if P ` 〈0, ε, σ〉B∗ 〈|P|, e, σ′〉 for some e ∈ Stk
undefined otherwise

23 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Properties of AM

Another Property: Determinism

Lemma 4.10

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,

γ B γ′ and γ B γ′′ imply γ′ = γ′′.

Proof (Idea).

• Instruction to be executed is unambiguously given by program counter
• Topmost stack entries and storage state then yield unique successor configuration

Thus the following function is well defined:

Definition 4.11 (Semantics of AM)

The semantics of an AM program is given by MJ.K : Code→ (Σ 99K Σ) as follows:

MJPKσ :=

{
σ′ if P ` 〈0, ε, σ〉B∗ 〈|P|, e, σ′〉 for some e ∈ Stk
undefined otherwise

23 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

Properties of AM

Another Property: Determinism

Lemma 4.10

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,

γ B γ′ and γ B γ′′ imply γ′ = γ′′.

Proof (Idea).

• Instruction to be executed is unambiguously given by program counter
• Topmost stack entries and storage state then yield unique successor configuration

Thus the following function is well defined:

Definition 4.11 (Semantics of AM)

The semantics of an AM program is given by MJ.K : Code→ (Σ 99K Σ) as follows:

MJPKσ :=

{
σ′ if P ` 〈0, ε, σ〉B∗ 〈|P|, e, σ′〉 for some e ∈ Stk
undefined otherwise

23 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 4: Operational Semantics of WHILE III
(Summary & Application to Compiler Correctness)

	Recap: Execution of Statements
	Functional of the Operational Semantics
	Summary: Operational Semantics
	Application: Compiler Correctness
	The Abstract Machine
	Properties of AM

