

Semantics and Verification of Software

Summer Semester 2015

Lecture 4: Operational Semantics of WHILE III (Summary & Application to Compiler Correctness)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Recap: Execution of Statements

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM

Recap: Execution of Statements

Execution of Statements

Remember:

 $c:= ext{skip}\mid x:=a\mid c_1$; $c_2\mid ext{if } b ext{ then } c_1 ext{ else } c_2 ext{ end } \mid ext{while } b ext{ do } c ext{ end } \in ext{\it Cmd}$

Definition (Execution relation for statements)

For $c \in Cmd$ and $\sigma, \sigma' \in \Sigma$, the execution relation $\langle c, \sigma \rangle \to \sigma'$ is defined by:

$$\begin{array}{c} \langle a,\sigma\rangle \to z \\ \hline \langle \text{skip},\sigma\rangle \to \sigma \\ \hline \langle c_1,\sigma\rangle \to \sigma' \ \langle c_2,\sigma'\rangle \to \sigma'' \\ \hline \langle c_1;c_2,\sigma\rangle \to \sigma'' \\ \hline \langle b,\sigma\rangle \to \text{false} \ \langle c_2,\sigma\rangle \to \sigma' \\ \hline \langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end, } \sigma\rangle \to \sigma' \\ \hline \langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end, } \sigma\rangle \to \sigma' \\ \hline \langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end, } \sigma\rangle \to \sigma' \\ \hline \langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end, } \sigma\rangle \to \sigma' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma\rangle \to \sigma' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end, } \sigma'\rangle \to \sigma'' \to \sigma'' \\ \hline \langle \text{while } b \text{ do$$

Recap: Execution of Statements

Determinism of Execution Relation

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever $c \in Cmd$ and $\sigma, \sigma', \sigma'' \in \Sigma$ such that $\langle c, \sigma \rangle \to \sigma'$ and $\langle c, \sigma \rangle \to \sigma''$, then $\sigma' = \sigma''$.

- How to prove this theorem?
- Idea:
 - employ corresponding result for expressions (Lemma 3.6)
 - use induction on the syntactic structure of c ¼
- Instead: structural induction on derivation trees

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.5) justifies the following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,

$$\mathfrak{O}[\![.]\!]: \mathit{Cmd} \to (\Sigma \dashrightarrow \Sigma),$$

assigns to every statement $c \in Cmd$ a partial state transformation $\mathfrak{O}[\![c]\!]: \Sigma \dashrightarrow \Sigma$, which is defined as follows:

$$\mathfrak{O}[\![c]\!] \sigma := \begin{cases} \sigma' & \text{if } \langle \boldsymbol{c}, \sigma \rangle \to \sigma' \text{ for some } \sigma' \in \Sigma \\ \text{undefined} & \text{otherwise} \end{cases}$$

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.5) justifies the following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,

$$\mathfrak{O}[\![.]\!]: \mathit{Cmd} \to (\Sigma \dashrightarrow \Sigma),$$

assigns to every statement $c \in Cmd$ a partial state transformation $\mathfrak{O}[\![c]\!]: \Sigma \dashrightarrow \Sigma$, which is defined as follows:

$$\mathfrak{O}[\![c]\!]\sigma := \begin{cases} \sigma' & \text{if } \langle c,\sigma\rangle \to \sigma' \text{ for some } \sigma' \in \Sigma \\ \text{undefined} & \text{otherwise} \end{cases}$$

Remark: $\mathfrak{O}[\![c]\!]\sigma$ can indeed be undefined (consider e.g. c = while true do skip end; see Corollary 3.4)

Equivalence of Statements

Underlying principle: two (syntactic) objects are considered (semantically) equivalent if they have the same "meaning"

- finite automata: $A_1 \sim A_2$ iff $L(A_1) = L(A_2)$
- context-free grammars: $G_1 \sim G_2$ iff $L(G_1) = L(G_2)$
- Turing machines: $T_1 \sim T_2$ iff both compute same function

Equivalence of Statements

Underlying principle: two (syntactic) objects are considered (semantically) equivalent if they have the same "meaning"

- finite automata: $A_1 \sim A_2$ iff $L(A_1) = L(A_2)$
- context-free grammars: $G_1 \sim G_2$ iff $L(G_1) = L(G_2)$
- Turing machines: $T_1 \sim T_2$ iff both compute same function

Definition 4.2 (Operational equivalence)

Two statements $c_1, c_2 \in Cmd$ are called (operationally) equivalent (notation: $c_1 \sim c_2$) iff

$$\mathfrak{O}\llbracket c_1 \rrbracket = \mathfrak{O}\llbracket c_2 \rrbracket.$$

Equivalence of Statements

Underlying principle: two (syntactic) objects are considered (semantically) equivalent if they have the same "meaning"

- finite automata: $A_1 \sim A_2$ iff $L(A_1) = L(A_2)$
- context-free grammars: $G_1 \sim G_2$ iff $L(G_1) = L(G_2)$
- Turing machines: $T_1 \sim T_2$ iff both compute same function

Definition 4.2 (Operational equivalence)

Two statements $c_1, c_2 \in Cmd$ are called (operationally) equivalent (notation: $c_1 \sim c_2$) iff

$$\mathfrak{O}\llbracket c_1 \rrbracket = \mathfrak{O}\llbracket c_2 \rrbracket.$$

Thus:

- $c_1 \sim c_2$ iff $\mathfrak{O}[\![c_1]\!] \sigma = \mathfrak{O}[\![c_2]\!] \sigma$ for every $\sigma \in \Sigma$
- In particular, $\mathfrak{O}[\![c_1]\!]\sigma$ is undefined iff $\mathfrak{O}[\![c_2]\!]\sigma$ is undefined

"Unwinding" of Loops

Simple application of statement equivalence: test of execution condition in a while loop can be represented by an if statement

Lemma 4.3

For every $b \in BExp$ and $c \in Cmd$,

while $b \, \text{do} \, c \, \text{end} \sim \text{if} \, b \, \text{then} \, c$; while $b \, \text{do} \, c \, \text{end} \, \text{else} \, \text{skip} \, \text{end}$.

"Unwinding" of Loops

Simple application of statement equivalence: test of execution condition in a while loop can be represented by an if statement

Lemma 4.3

For every $b \in BExp$ and $c \in Cmd$,

while b do c end \sim if b then c; while b do c end else skip end.

Proof.

on the board

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM

Summary: Operational Semantics

Formalized by evaluation/execution relations

Summary: Operational Semantics

- Formalized by evaluation/execution relations
- Inductively defined by derivation trees using structural operational rules

Summary: Operational Semantics

- Formalized by evaluation/execution relations
- Inductively defined by derivation trees using structural operational rules
- Enables proofs about operational behaviour of programs using structural induction on derivation trees

Summary: Operational Semantics

- Formalized by evaluation/execution relations
- Inductively defined by derivation trees using structural operational rules
- Enables proofs about operational behaviour of programs using structural induction on derivation trees
- Semantic functional characterizes complete input/output behavior of programs

Application: Compiler Correctness

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

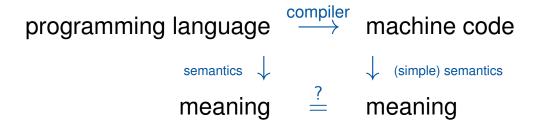
Application: Compiler Correctness

The Abstract Machine

Properties of AM

Application: Compiler Correctness

Compiler Correctness



Application: Compiler Correctness

Compiler Correctness

programming language
$$\stackrel{\text{compiler}}{\longrightarrow}$$
 machine code \downarrow (simple) semantics meaning $\stackrel{?}{=}$ meaning

To do:

- 1. Definition of abstract machine
- 2. Definition of (operational) semantics of machine instructions
- 3. Definition of translation WHILE → machine code ("compiler")
- 4. Proof: semantics of generated machine code = semantics of original source code

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM

The Abstract Machine

Definition 4.4 (Abstract machine)

The abstract machine (AM) is given by

programs P ∈ Code and instructions p:

```
P ::= p^*
p ::= PUSH(z) \mid PUSH(t) \mid ADD \mid SUB \mid MULT \mid
EQ \mid GT \mid NOT \mid AND \mid OR \mid
LOAD(x) \mid STO(x) \mid JMP(k) \mid JMPF(k)
(where z, k \in \mathbb{Z}, t \in \mathbb{B}, and x \in Var)
```


The Abstract Machine

Definition 4.4 (Abstract machine)

The abstract machine (AM) is given by

programs P ∈ Code and instructions p:

```
P ::= p^*
p ::= PUSH(z) \mid PUSH(t) \mid ADD \mid SUB \mid MULT \mid
EQ \mid GT \mid NOT \mid AND \mid OR \mid
LOAD(x) \mid STO(x) \mid JMP(k) \mid JMPF(k)
```

(where $z, k \in \mathbb{Z}$, $t \in \mathbb{B}$, and $x \in Var$)

- configurations of the form $\langle pc, e, \sigma \rangle \in Cnf$ where
 - $-pc \in \mathbb{Z}$ is the program counter (i.e., address of next instruction to be executed)
 - $-e \in Stk := (\mathbb{Z} \cup \mathbb{B})^*$ is the evaluation stack (top right)
 - $-\sigma \in \Sigma := (\mathit{Var} o \mathbb{Z})$ is the (storage) state

(thus $Cnf = \mathbb{Z} \times Stk \times \Sigma$)

The Abstract Machine

Definition 4.4 (Abstract machine)

The abstract machine (AM) is given by

programs P ∈ Code and instructions p:

```
P ::= p^*
p ::= PUSH(z) \mid PUSH(t) \mid ADD \mid SUB \mid MULT \mid
EQ \mid GT \mid NOT \mid AND \mid OR \mid
LOAD(x) \mid STO(x) \mid JMP(k) \mid JMPF(k)
```

(where $z, k \in \mathbb{Z}$, $t \in \mathbb{B}$, and $x \in Var$)

- configurations of the form $\langle pc, e, \sigma \rangle \in Cnf$ where
 - $-pc \in \mathbb{Z}$ is the program counter (i.e., address of next instruction to be executed)
 - $-e \in Stk := (\mathbb{Z} \cup \mathbb{B})^*$ is the evaluation stack (top right)
 - $-\sigma \in \Sigma := (Var \to \mathbb{Z})$ is the (storage) state

```
(thus Cnf = \mathbb{Z} \times Stk \times \Sigma)
```

- initial configurations of the form $\langle \mathbf{0}, \varepsilon, \sigma \rangle$
- final configurations of the form $\langle |P|, e, \sigma \rangle$

Semantics of AM-Code I

Definition 4.5 (Transition relation of AM)

```
For P = p_0; ...; p_{n-1} \in Code and 0 \le pc < n, the transition relation \triangleright \subseteq Cnf \times Cnf is given by
                                          P \vdash \langle pc, e, \sigma \rangle \rhd \langle pc + 1, e : z, \sigma \rangle
                                                                                                                                         if p_{pc} = PUSH(z)
                                          P \vdash \langle pc, e, \sigma \rangle \rhd \langle pc + 1, e : t, \sigma \rangle
                                                                                                                                        if p_{pc} = PUSH(t)
                          P \vdash \langle pc, e : z_1 : z_2, \sigma \rangle \rhd \langle pc + 1, e : (z_1 + z_2), \sigma \rangle
                                                                                                                                        if p_{pc} = ADD
                          P \vdash \langle pc, e : z_1 : z_2, \sigma \rangle \triangleright \langle pc + 1, e : (z_1 - z_2), \sigma \rangle
                                                                                                                                      if p_{pc} = SUB
                          P \vdash \langle pc, e : z_1 : z_2, \sigma \rangle \triangleright \langle pc + 1, e : (z_1 \cdot z_2), \sigma \rangle
                                                                                                                                        if p_{pc} = MULT
                          P \vdash \langle pc, e : z_1 : z_2, \sigma \rangle \triangleright \langle pc + 1, e : (z_1 = z_2), \sigma \rangle
                                                                                                                                       if p_{pc} = EQ
                          P \vdash \langle pc, e : z_1 : z_2, \sigma \rangle \triangleright \langle pc + 1, e : (z_1 > z_2), \sigma \rangle
                                                                                                                                        if p_{pc} = GT
                                     P \vdash \langle pc, e: t, \sigma \rangle \rhd \langle pc + 1, e: (\neg t), \sigma \rangle
                                                                                                                                        if p_{pc} = NOT
                            P \vdash \langle pc, e : t_1 : t_2, \sigma \rangle \triangleright \langle pc + 1, e : (t_1 \land t_2), \sigma \rangle
                                                                                                                                        if p_{pc} = AND
                            P \vdash \langle pc, e: t_1: t_2, \sigma \rangle \triangleright \langle pc + 1, e: (t_1 \vee t_2), \sigma \rangle
                                                                                                                                        if p_{pc} = 0R
                                          P \vdash \langle pc, e, \sigma \rangle \rhd \langle pc + 1, e : \sigma(x), \sigma \rangle
                                                                                                                                        if p_{pc} = LOAD(x)
                                    P \vdash \langle pc, e : z, \sigma \rangle \triangleright \langle pc + 1, e, \sigma[x \mapsto z] \rangle
                                                                                                                                        if p_{pc} = STO(x)
                                          P \vdash \langle pc, e, \sigma \rangle \triangleright \langle pc + k, e, \sigma \rangle
                                                                                                                                         if p_{pc} = \text{JMP}(k)
                              P \vdash \langle pc, e : true, \sigma \rangle \triangleright \langle pc + 1, e, \sigma \rangle
                                                                                                                                         if p_{pc} = \text{JMPF}(k)
                             P \vdash \langle pc, e : false, \sigma \rangle \triangleright \langle pc + k, e, \sigma \rangle
                                                                                                                                         if p_{pc} = \text{JMPF}(k)
```


Semantics of AM-Code II

Corollary 4.6

 \triangleright is not total, i.e., there exists $\gamma \in \mathit{Cnf}$ such that

$$\gamma \not \triangleright \gamma'$$

for all $\gamma' \in Cnf$

Semantics of AM-Code II

Corollary 4.6

 \triangleright is not total, i.e., there exists $\gamma \in \mathit{Cnf}$ such that

$$\gamma \not \triangleright \gamma'$$

for all $\gamma' \in Cnf$

Proof.

Possible cases:

- γ final (that is, $\gamma = \langle |P|, e, \sigma \rangle$)
- γ stuck
 - e.g., $\gamma = \langle pc, 1, \sigma \rangle$ with $p_{pc} = ext{ADD or } p_{pc} = ext{JMPF}(k)$
 - or $\gamma = \langle pc, e, \sigma \rangle$ with $pc \notin \{0, \dots, |P|\}$

Alternative Choices

Remark: more realistic machine architectures

- Variables referenced by address (and not by name)
 - configurations $\langle pc, e, \mu \rangle$ with memory $\mu \in (\mathbb{N} \to \mathbb{Z})$
 - LOAD(x)/STO(x) replaced by LOAD(m)/STO(m) (where $m \in \mathbb{N}$) (requires symbol table for translation)
- Registers for storing intermediate values
 (in place of evaluation stack e; involves register allocation)

Terminating and Looping Computations I

Definition 4.7 (AM computations)

• A finite computation is a finite configuration sequence of the form $\gamma_0, \gamma_1, \ldots, \gamma_k$ where $k \in \mathbb{N}$ and $\gamma_{i-1} \rhd \gamma_i$ for each $i \in \{1, \ldots, k\}$

Terminating and Looping Computations I

Definition 4.7 (AM computations)

- A finite computation is a finite configuration sequence of the form $\gamma_0, \gamma_1, \ldots, \gamma_k$ where $k \in \mathbb{N}$ and $\gamma_{i-1} \rhd \gamma_i$ for each $i \in \{1, \ldots, k\}$
- If, in addition, there is no γ such that $\gamma_k \triangleright \gamma$, then $\gamma_0, \gamma_1, \ldots, \gamma_k$ is called terminating

Terminating and Looping Computations I

Definition 4.7 (AM computations)

- A finite computation is a finite configuration sequence of the form $\gamma_0, \gamma_1, \ldots, \gamma_k$ where $k \in \mathbb{N}$ and $\gamma_{i-1} \rhd \gamma_i$ for each $i \in \{1, \ldots, k\}$
- If, in addition, there is no γ such that $\gamma_k \triangleright \gamma$, then $\gamma_0, \gamma_1, \ldots, \gamma_k$ is called terminating
- A looping computation is an infinite configuration sequence of the form $\gamma_0, \gamma_1, \gamma_2, \ldots$ where $\gamma_i \triangleright \gamma_{i+1}$ for each $i \in \mathbb{N}$

Terminating and Looping Computations I

Definition 4.7 (AM computations)

- A finite computation is a finite configuration sequence of the form $\gamma_0, \gamma_1, \ldots, \gamma_k$ where $k \in \mathbb{N}$ and $\gamma_{i-1} \rhd \gamma_i$ for each $i \in \{1, \ldots, k\}$
- If, in addition, there is no γ such that $\gamma_k > \gamma$, then $\gamma_0, \gamma_1, \ldots, \gamma_k$ is called terminating
- A looping computation is an infinite configuration sequence of the form $\gamma_0, \gamma_1, \gamma_2, \ldots$ where $\gamma_i \triangleright \gamma_{i+1}$ for each $i \in \mathbb{N}$

Note: according to (the proof of) Corollary 4.6, a terminating computation may end in a final or in a stuck configuration

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and $\sigma(x) = 3$, we obtain the following terminating computation:

$$\langle \mathbf{0}, \varepsilon, \sigma \rangle$$

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x); 1:PUSH(1); 2:ADD; 3:STO(x) and $\sigma(x) = 3$, we obtain the following terminating computation:

$$\langle \mathbf{0}, \varepsilon, \sigma \rangle \rhd \langle \mathbf{1}, \mathbf{3}, \sigma \rangle$$

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and $\sigma(x) = 3$, we obtain the following terminating computation:

$$\langle 0, \varepsilon, \sigma \rangle \rhd \langle 1, 3, \sigma \rangle \rhd \langle 2, 3 : 1, \sigma \rangle$$

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and $\sigma(x) = 3$, we obtain the following terminating computation:

$$\langle \mathbf{0}, \varepsilon, \sigma \rangle \rhd \langle \mathbf{1}, \mathbf{3}, \sigma \rangle \rhd \langle \mathbf{2}, \mathbf{3} : \mathbf{1}, \sigma \rangle \rhd \langle \mathbf{3}, \mathbf{4}, \sigma \rangle$$

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and $\sigma(x) = 3$, we obtain the following terminating computation:

$$\langle 0, \varepsilon, \sigma \rangle \rhd \langle 1, 3, \sigma \rangle \rhd \langle 2, 3 : 1, \sigma \rangle \rhd \langle 3, 4, \sigma \rangle \rhd \langle 4, \varepsilon, \sigma[x \mapsto 4] \rangle$$

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and $\sigma(x) = 3$, we obtain the following terminating computation:

$$\langle 0, \varepsilon, \sigma \rangle \rhd \langle 1, 3, \sigma \rangle \rhd \langle 2, 3 : 1, \sigma \rangle \rhd \langle 3, 4, \sigma \rangle \rhd \langle 4, \varepsilon, \sigma[x \mapsto 4] \rangle$$

Remark: implements statement x := x + 1

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and $\sigma(x) = 3$, we obtain the following terminating computation:

$$\langle 0, \varepsilon, \sigma \rangle \rhd \langle 1, 3, \sigma \rangle \rhd \langle 2, 3 : 1, \sigma \rangle \rhd \langle 3, 4, \sigma \rangle \rhd \langle 4, \varepsilon, \sigma[x \mapsto 4] \rangle$$

Remark: implements statement x := x + 1

2. For P := 0: PUSH(true); 1: JMPF(2); 2: JMP(-2), the following computation loops:

$$\langle \mathbf{0}, \varepsilon, \sigma \rangle$$

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and $\sigma(x) = 3$, we obtain the following terminating computation:

$$\langle 0, \varepsilon, \sigma \rangle \rhd \langle 1, 3, \sigma \rangle \rhd \langle 2, 3 : 1, \sigma \rangle \rhd \langle 3, 4, \sigma \rangle \rhd \langle 4, \varepsilon, \sigma[x \mapsto 4] \rangle$$

Remark: implements statement x := x + 1

2. For P := 0: PUSH(true); 1: JMPF(2); 2: JMP(-2), the following computation loops:

$$\langle \mathbf{0}, \varepsilon, \sigma \rangle \rhd \langle \mathbf{1}, \mathsf{true}, \sigma \rangle$$

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and $\sigma(x) = 3$, we obtain the following terminating computation:

$$\langle 0, \varepsilon, \sigma \rangle \rhd \langle 1, 3, \sigma \rangle \rhd \langle 2, 3 : 1, \sigma \rangle \rhd \langle 3, 4, \sigma \rangle \rhd \langle 4, \varepsilon, \sigma[x \mapsto 4] \rangle$$

Remark: implements statement x := x + 1

2. For P := 0: PUSH(true); 1: JMPF(2); 2: JMP(-2), the following computation loops:

$$\langle \mathbf{0}, \varepsilon, \sigma \rangle \rhd \langle \mathbf{1}, \mathsf{true}, \sigma \rangle \rhd \langle \mathbf{2}, \varepsilon, \sigma \rangle$$

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and $\sigma(x) = 3$, we obtain the following terminating computation:

$$\langle 0, \varepsilon, \sigma \rangle \rhd \langle 1, 3, \sigma \rangle \rhd \langle 2, 3 : 1, \sigma \rangle \rhd \langle 3, 4, \sigma \rangle \rhd \langle 4, \varepsilon, \sigma[x \mapsto 4] \rangle$$

Remark: implements statement x := x + 1

2. For P := 0: PUSH(true); 1: JMPF(2); 2: JMP(-2), the following computation loops:

$$\langle \mathbf{0}, \varepsilon, \sigma \rangle \rhd \langle \mathbf{1}, \mathsf{true}, \sigma \rangle \rhd \langle \mathbf{2}, \varepsilon, \sigma \rangle \rhd \langle \mathbf{0}, \varepsilon, \sigma \rangle \rhd \dots$$

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and $\sigma(x) = 3$, we obtain the following terminating computation:

$$\langle 0, \varepsilon, \sigma \rangle \rhd \langle 1, 3, \sigma \rangle \rhd \langle 2, 3 : 1, \sigma \rangle \rhd \langle 3, 4, \sigma \rangle \rhd \langle 4, \varepsilon, \sigma[x \mapsto 4] \rangle$$

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true); 1:JMPF(2); 2:JMP(-2), the following computation loops:

$$\langle \mathbf{0}, \varepsilon, \sigma \rangle \rhd \langle \mathbf{1}, \mathsf{true}, \sigma \rangle \rhd \langle \mathbf{2}, \varepsilon, \sigma \rangle \rhd \langle \mathbf{0}, \varepsilon, \sigma \rangle \rhd \dots$$

Remark: implements statement while true do skip end

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM

A New Inductive Principle

Application: Finite computations (Def. 4.7)

Definition: a finite computation $\gamma_0, \gamma_1, \ldots, \gamma_k$ has length k

Induction base: property holds for all computations of length 0

Induction hypothesis: property holds for all computations of length $\leq k$

Induction step: property holds for all computations of length k+1

Application: Extension of Code and Stack

Lemma 4.9

If
$$P \vdash \langle pc, e, \sigma \rangle \rhd^* \langle pc', e', \sigma' \rangle$$
, then
$$P_1; P; P_2 \vdash \langle |P_1| + pc, e_0 : e, \sigma \rangle \rhd^* \langle |P_1| + pc', e_0 : e', \sigma' \rangle$$

for all $P_1, P_2 \in Code$ and $e_0 \in Stk$.

Interpretation: both the code and the stack component can be extended without actually changing the behaviour of the machine

Application: Extension of Code and Stack

Lemma 4.9

If
$$P \vdash \langle pc, e, \sigma \rangle \rhd^* \langle pc', e', \sigma' \rangle$$
, then
$$P_1; P; P_2 \vdash \langle |P_1| + pc, e_0 : e, \sigma \rangle \rhd^* \langle |P_1| + pc', e_0 : e', \sigma' \rangle$$

for all $P_1, P_2 \in Code$ and $e_0 \in Stk$.

Interpretation: both the code and the stack component can be extended without actually changing the behaviour of the machine

Proof.

by induction on the length of the computation (on the board)

Another Property: Determinism

Lemma 4.10

The semantics of AM is deterministic: for all $\gamma, \gamma', \gamma'' \in Cnf$,

$$\gamma \rhd \gamma'$$
 and $\gamma \rhd \gamma''$ imply $\gamma' = \gamma''$.

Another Property: Determinism

Lemma 4.10

The semantics of AM is deterministic: for all $\gamma, \gamma', \gamma'' \in Cnf$,

$$\gamma \rhd \gamma'$$
 and $\gamma \rhd \gamma''$ imply $\gamma' = \gamma''$.

Proof (Idea).

- Instruction to be executed is unambiguously given by program counter
- Topmost stack entries and storage state then yield unique successor configuration

Another Property: Determinism

Lemma 4.10

The semantics of AM is deterministic: for all $\gamma, \gamma', \gamma'' \in Cnf$,

$$\gamma \rhd \gamma'$$
 and $\gamma \rhd \gamma''$ imply $\gamma' = \gamma''$.

Proof (Idea).

- Instruction to be executed is unambiguously given by program counter
- Topmost stack entries and storage state then yield unique successor configuration

Thus the following function is well defined:

Definition 4.11 (Semantics of AM)

The semantics of an AM program is given by $\mathfrak{M}[\![.]\!]: Code \to (\Sigma \dashrightarrow \Sigma)$ as follows:

$$\mathfrak{M}[\![P]\!]\sigma := \begin{cases} \sigma' & \text{if } P \vdash \langle \mathbf{0}, \varepsilon, \sigma \rangle \rhd^* \langle |P|, \mathbf{e}, \sigma' \rangle \text{ for some } \mathbf{e} \in \mathit{Stk} \\ \text{otherwise} \end{cases}$$

