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Recap: Execution of Statements

Execution of Statements

Remember:
c ::= skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end ∈ Cmd

Definition (Execution relation for statements)

For c ∈ Cmd and σ, σ′ ∈ Σ, the execution relation 〈c, σ〉 → σ′ is defined by:

(skip)

〈skip, σ〉 → σ
(asgn)

〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2 end, σ〉 → σ′

(if-f)

〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2 end, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c end, σ〉 → σ

(wh-t)

〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c end, σ′〉 → σ′′

〈while b do c end, σ〉 → σ′′
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Recap: Execution of Statements

Determinism of Execution Relation

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever c ∈ Cmd and
σ, σ′, σ′′ ∈ Σ such that 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′, then σ′ = σ′′.

• How to prove this theorem?
• Idea:

– employ corresponding result for expressions (Lemma 3.6)
– use induction on the syntactic structure of c  

• Instead: structural induction on derivation trees
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Functional of the Operational Semantics
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Functional of the Operational Semantics

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.5) justifies the following
definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,

OJ.K : Cmd → (Σ 99K Σ),

assigns to every statement c ∈ Cmd a partial state transformation OJcK : Σ 99K Σ,
which is defined as follows:

OJcKσ :=

{
σ′ if 〈c, σ〉 → σ′ for some σ′ ∈ Σ
undefined otherwise

Remark: OJcKσ can indeed be undefined
(consider e.g. c = while true do skip end; see Corollary 3.4)
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Functional of the Operational Semantics

Equivalence of Statements

Underlying principle: two (syntactic) objects are considered (semantically)
equivalent if they have the same “meaning”
• finite automata: A1 ∼ A2 iff L(A1) = L(A2)

• context-free grammars: G1 ∼ G2 iff L(G1) = L(G2)

• Turing machines: T1 ∼ T2 iff both compute same function

Definition 4.2 (Operational equivalence)

Two statements c1, c2 ∈ Cmd are called (operationally) equivalent (notation: c1 ∼ c2)
iff

OJc1K = OJc2K.

Thus:
• c1 ∼ c2 iff OJc1Kσ = OJc2Kσ for every σ ∈ Σ

• In particular, OJc1Kσ is undefined iff OJc2Kσ is undefined
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Functional of the Operational Semantics

“Unwinding” of Loops

Simple application of statement equivalence: test of execution condition in a while
loop can be represented by an if statement

Lemma 4.3

For every b ∈ BExp and c ∈ Cmd,

while b do c end ∼ if b then c;while b do c end else skip end.

Proof.

on the board
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Summary: Operational Semantics

Summary: Operational Semantics

• Formalized by evaluation/execution relations

• Inductively defined by derivation trees using structural operational rules
• Enables proofs about operational behaviour of programs using structural induction on

derivation trees
• Semantic functional characterizes complete input/output behavior of programs
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Application: Compiler Correctness
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Application: Compiler Correctness

Compiler Correctness

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:
1. Definition of abstract machine
2. Definition of (operational) semantics of machine instructions
3. Definition of translation WHILE→ machine code (“compiler”)
4. Proof: semantics of generated machine code = semantics of original source code
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The Abstract Machine
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The Abstract Machine

The Abstract Machine

Definition 4.4 (Abstract machine)

The abstract machine (AM) is given by
• programs P ∈ Code and instructions p:

P ::= p∗

p ::= PUSH(z) | PUSH(t) | ADD | SUB | MULT |
EQ | GT | NOT | AND | OR |
LOAD(x) | STO(x) | JMP(k) | JMPF(k)

(where z, k ∈ Z, t ∈ B, and x ∈ Var )

• configurations of the form 〈pc, e, σ〉 ∈ Cnf where
– pc ∈ Z is the program counter (i.e., address of next instruction to be executed)
– e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top right)
– σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Z× Stk × Σ)
• initial configurations of the form 〈0, ε, σ〉
• final configurations of the form 〈|P|, e, σ〉
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The Abstract Machine

Semantics of AM-Code I

Definition 4.5 (Transition relation of AM)

For P = p0; . . . ;pn−1 ∈ Code and 0 ≤ pc < n, the transition relation B ⊆ Cnf × Cnf is given by
P ` 〈pc, e, σ〉 B 〈pc + 1, e : z, σ〉 if ppc = PUSH(z)
P ` 〈pc, e, σ〉 B 〈pc + 1, e : t, σ〉 if ppc = PUSH(t)

P ` 〈pc, e : z1 : z2, σ〉 B 〈pc + 1, e : (z1 + z2), σ〉 if ppc = ADD
P ` 〈pc, e : z1 : z2, σ〉 B 〈pc + 1, e : (z1 − z2), σ〉 if ppc = SUB
P ` 〈pc, e : z1 : z2, σ〉 B 〈pc + 1, e : (z1 · z2), σ〉 if ppc = MULT
P ` 〈pc, e : z1 : z2, σ〉 B 〈pc + 1, e : (z1 = z2), σ〉 if ppc = EQ
P ` 〈pc, e : z1 : z2, σ〉 B 〈pc + 1, e : (z1 > z2), σ〉 if ppc = GT

P ` 〈pc, e : t, σ〉 B 〈pc + 1, e : (¬t), σ〉 if ppc = NOT
P ` 〈pc, e : t1 : t2, σ〉 B 〈pc + 1, e : (t1 ∧ t2), σ〉 if ppc = AND
P ` 〈pc, e : t1 : t2, σ〉 B 〈pc + 1, e : (t1 ∨ t2), σ〉 if ppc = OR

P ` 〈pc, e, σ〉 B 〈pc + 1, e : σ(x), σ〉 if ppc = LOAD(x)
P ` 〈pc, e : z, σ〉 B 〈pc + 1, e, σ[x 7→ z]〉 if ppc = STO(x)

P ` 〈pc, e, σ〉 B 〈pc + k , e, σ〉 if ppc = JMP(k)
P ` 〈pc, e : true, σ〉 B 〈pc + 1, e, σ〉 if ppc = JMPF(k)

P ` 〈pc, e : false, σ〉 B 〈pc + k , e, σ〉 if ppc = JMPF(k)
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The Abstract Machine

Semantics of AM-Code II

Corollary 4.6

B is not total, i.e., there exists γ ∈ Cnf such that

γ 6Bγ′

for all γ′ ∈ Cnf

Proof.

Possible cases:
• γ final (that is, γ = 〈|P|, e, σ〉)
• γ stuck

– e.g., γ = 〈pc, 1, σ〉 with ppc = ADD or ppc = JMPF(k)
– or γ = 〈pc, e, σ〉 with pc /∈ {0, . . . , |P|}
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The Abstract Machine

Alternative Choices

Remark: more realistic machine architectures
• Variables referenced by address (and not by name)

– configurations 〈pc, e, µ〉 with memory µ ∈ (N→ Z)
– LOAD(x)/STO(x) replaced by LOAD(m)/STO(m) (where m ∈ N)

(requires symbol table for translation)
• Registers for storing intermediate values

(in place of evaluation stack e; involves register allocation)
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The Abstract Machine

Terminating and Looping Computations I

Definition 4.7 (AM computations)

• A finite computation is a finite configuration sequence of the form γ0, γ1, . . . , γk where
k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}

• If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is called terminating
• A looping computation is an infinite configuration sequence of the form γ0, γ1, γ2, . . . where
γi B γi+1 for each i ∈ N

Note: according to (the proof of) Corollary 4.6, a terminating computation may end in
a final or in a stuck configuration
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The Abstract Machine

Terminating and Looping Computations II

Example 4.8

1. For P := 0:LOAD(x);1:PUSH(1); 2:ADD;3:STO(x) and σ(x) = 3, we obtain the following
terminating computation:

〈0, ε, σ〉

B 〈1, 3, σ〉B 〈2, 3 : 1, σ〉B 〈3, 4, σ〉B 〈4, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

2. For P := 0:PUSH(true);1:JMPF(2);2:JMP(-2), the following computation loops:

〈0, ε, σ〉B 〈1, true, σ〉B 〈2, ε, σ〉B 〈0, ε, σ〉B . . .

Remark: implements statement while true do skip end
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Properties of AM

Outline of Lecture 4

Recap: Execution of Statements

Functional of the Operational Semantics

Summary: Operational Semantics

Application: Compiler Correctness

The Abstract Machine

Properties of AM
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Properties of AM

A New Inductive Principle

Application: Finite computations (Def. 4.7)

Definition: a finite computation γ0, γ1, . . . , γk has length k
Induction base: property holds for all computations of length 0
Induction hypothesis: property holds for all computations of length ≤ k
Induction step: property holds for all computations of length k + 1
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Properties of AM

Application: Extension of Code and Stack

Lemma 4.9

If P ` 〈pc, e, σ〉B∗ 〈pc′, e′, σ′〉, then

P1; P; P2 ` 〈|P1| + pc, e0 : e, σ〉B∗ 〈|P1| + pc′, e0 : e′, σ′〉
for all P1,P2 ∈ Code and e0 ∈ Stk.

Interpretation: both the code and the stack component can be extended without
actually changing the behaviour of the machine

Proof.

by induction on the length of the computation (on the board)
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Properties of AM

Another Property: Determinism

Lemma 4.10

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,

γ B γ′ and γ B γ′′ imply γ′ = γ′′.

Proof (Idea).

• Instruction to be executed is unambiguously given by program counter
• Topmost stack entries and storage state then yield unique successor configuration

Thus the following function is well defined:

Definition 4.11 (Semantics of AM)

The semantics of an AM program is given by MJ.K : Code→ (Σ 99K Σ) as follows:

MJPKσ :=

{
σ′ if P ` 〈0, ε, σ〉B∗ 〈|P|, e, σ′〉 for some e ∈ Stk
undefined otherwise
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