

Semantics and Verification of Software

Summer Semester 2015

Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Proof by Structural Induction

Proof principle

```
Given: an inductive set, i.e., a set S whose elements are either
```

- atomic or
- obtained from atomic elements by (finite) application of certain operations

```
To show: property P(s) applies to every s \in S
```

```
Proof: we verify:
```

```
Induction base: P(s) holds for every atomic element s
Induction hypothesis: assume that P(s_1), P(s_2) etc.
Induction step: then also P(f(s_1, \ldots, s_n)) holds for every operation f of arity n
```

Remark: structural induction is a special case of well-founded induction

Evaluation of Arithmetic Expressions

Remember: $a ::= z | x | a_1 + a_2 | a_1 - a_2 | a_1 * a_2 \in AExp$

Definition (Evaluation relation for arithmetic expressions)

If $a \in AExp$ and $\sigma \in \Sigma$, then $\langle a, \sigma \rangle$ is called a configuration.

Expression *a* evaluates to $z \in \mathbb{Z}$ in state σ (notation: $\langle a, \sigma \rangle \to z$) if this relationship is derivable by means of the following rules:

Axioms:
$$\frac{\overline{\langle z, \sigma \rangle \to z}}{\overline{\langle a_1, \sigma \rangle \to z_1}} \quad \overline{\langle x, \sigma \rangle \to \sigma(x)}$$

Rules:
$$\frac{\overline{\langle a_1, \sigma \rangle \to z_1} \quad \langle a_2, \sigma \rangle \to z_2}{\overline{\langle a_1 + a_2, \sigma \rangle \to z}} \text{ where } z := z_1 + z_2$$

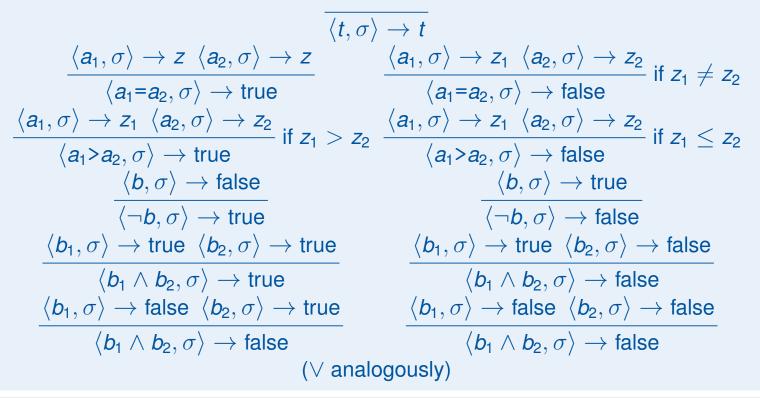
$$\frac{\overline{\langle a_1, \sigma \rangle \to z_1} \quad \langle a_2, \sigma \rangle \to z_2}{\overline{\langle a_1 - a_2, \sigma \rangle \to z}} \text{ where } z := z_1 - z_2$$

$$\frac{\overline{\langle a_1, \sigma \rangle \to z_1} \quad \langle a_2, \sigma \rangle \to z_2}{\overline{\langle a_1 + a_2, \sigma \rangle \to z_2}} \text{ where } z := z_1 \cdot z_2$$

Evaluation of Boolean Expressions

Definition ((Strict) evaluation relation for Boolean expressions)

For $b \in BExp$, $\sigma \in \Sigma$, and $t \in \mathbb{B}$, the evaluation relation $\langle b, \sigma \rangle \to t$ is defined by:



Meaning of Statements

Effect of statement = modification of program state

Example 3.1

Goal: define execution relation \rightarrow such that, e.g.,

$$\langle \mathbf{x} := \mathbf{5}, \sigma \rangle \rightarrow \sigma[\mathbf{x} \mapsto \mathbf{5}]$$

where for every $\sigma \in \Sigma$, $x, y \in Var$, and $z \in \mathbb{Z}$:

$$\sigma[x\mapsto z](y):=egin{cases} z & ext{if } y=x \ \sigma(y) & ext{otherwise} \end{cases}$$

Execution of Statements

Remember:

 $c ::= ext{skip} \mid x := a \mid c_1; c_2 \mid ext{if } b ext{ then } c_1 ext{ else } c_2 ext{ end } \mid ext{while } b ext{ do } c ext{ end } \in \textit{Cmd}$

Definition 3.2 (Execution relation for statements)

For $c \in Cmd$ and $\sigma, \sigma' \in \Sigma$, the execution relation $\langle c, \sigma \rangle \rightarrow \sigma'$ is defined by:

$$\begin{array}{c} (\operatorname{skip}) \overline{\langle \operatorname{skip}, \sigma \rangle \to \sigma} & (\operatorname{asgn}) \overline{\langle x := a, \sigma \rangle \to \sigma[x \mapsto z]} \\ (\operatorname{asgn}) \overline{\langle x := a, \sigma \rangle \to \sigma[x \mapsto z]} \\ (\operatorname{asgn}) \overline{\langle x := a, \sigma \rangle \to \sigma[x \mapsto z]} \\ (\operatorname{asgn}) \overline{\langle x := a, \sigma \rangle \to \sigma[x \mapsto z]} \\ (\operatorname{asgn}) \overline{\langle x := a, \sigma \rangle \to \sigma[x \mapsto z]} \\ (\operatorname{b}, \sigma \rangle \to \operatorname{true} \langle c_1, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{false} \langle c_2, \sigma \rangle \to \sigma'' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{false} \langle c_2, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{false} \langle c_2, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{true} \langle c, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{false} \langle c_2, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{true} \langle c, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{true} \langle c, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \sigma'' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{true} \langle c, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \sigma'' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{true} \langle c, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \sigma'' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{true} \langle c, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \sigma'' \\ (\operatorname{b}, \sigma \rangle \to \sigma'' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{true} \langle c, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \sigma'' \\ (\operatorname{b}, \sigma \rangle \to \operatorname{true} \langle c, \sigma \rangle \to \sigma' \\ (\operatorname{b}, \sigma \rangle \to \sigma'' \\ (\operatorname{b}, \sigma \land \sigma' \to \sigma'' \\ (\operatorname{b}, \sigma \to \sigma'' \\ (\operatorname{b}, \sigma \to \sigma'' \\ (\operatorname{b}, \sigma \to \sigma' \to \sigma' \to \sigma'' \\ (\operatorname{b}, \sigma \to \sigma' \to \sigma' \to \sigma'' \\ (\operatorname{b}, \sigma \to \sigma' \to \sigma'$$

An Execution Example

Example 3.3

•
$$c := y := 1$$
; while $\neg (x=1) = do y := y*x$; $x := x-1 = do y$

- Claim: $\langle \boldsymbol{c}, \sigma \rangle \rightarrow \sigma_{1,6}$ for every $\sigma \in \Sigma$ with $\sigma(\mathbf{x}) = 3$
- Notation: $\sigma_{i,j}$ means $\sigma(\mathbf{x}) = i$, $\sigma(\mathbf{y}) = j$
- Derivation tree: on the board

Non-Terminating Statements

Corollary 3.4

The execution relation for statements is not total, i.e., there exist $c \in Cmd$ and $\sigma \in \Sigma$ such that $\langle c, \sigma \rangle \rightarrow \sigma'$ for no $\sigma' \in \Sigma$.

Proof.

Example: c = while true do skip end (proof by contradiction; on the board)

Determinism of Execution Relation I

This operational semantics is well defined in the following sense:

Theorem 3.5

The execution relation for statements is deterministic, i.e., whenever $c \in Cmd$ and $\sigma, \sigma', \sigma'' \in \Sigma$ such that $\langle c, \sigma \rangle \to \sigma'$ and $\langle c, \sigma \rangle \to \sigma''$, then $\sigma' = \sigma''$.

The proof is based on the corresponding result for expressions.

Determinism of Evaluation Relations

Lemma 3.6

1. For every $a \in AExp$, $\sigma \in \Sigma$, and $z, z' \in \mathbb{Z}$: $\langle a, \sigma \rangle \rightarrow z$ and $\langle a, \sigma \rangle \rightarrow z'$ implies z = z'. 2. For every $b \in BExp$, $\sigma \in \Sigma$, and $t, t' \in \mathbb{B}$: $\langle b, \sigma \rangle \rightarrow t$ and $\langle b, \sigma \rangle \rightarrow t'$ implies t = t'.

Remarks:

• Lemma 3.6(1) is not implied by Lemma 2.6 (" $\sigma|_{FV(a)} = \sigma'|_{FV(a)} \Rightarrow (\langle a, \sigma \rangle \rightarrow z \iff \langle a, \sigma' \rangle \rightarrow z)$ ")!

The latter just implies

$$\{z \in \mathbb{Z} \mid \langle a, \sigma \rangle \to z\} = \{z \in \mathbb{Z} \mid \langle a, \sigma' \rangle \to z\}$$

while Lemma 3.6(1) states that

$$|\{z \in \mathbb{Z} \mid \langle a, \sigma \rangle \to z\}| \leq 1.$$

• Lemma 3.6 can be shown by induction on the structure of expressions.

Excursus: Proof by Structural Induction V

Application: Boolean expressions (Def. 1.2)

Definition: BExp is the least set which

- contains the truth values $t \in \mathbb{B}$ and, for every $a_1, a_2 \in AExp$, $a_1=a_2$ and $a_1>a_2$, and
- contains $\neg b_1$, $b_1 \land b_2$ and $b_1 \lor b_2$ whenever $b_1, b_2 \in BExp$

Induction base: P(t), $P(a_1=a_2)$ and $P(a_1>a_2)$ holds

(for every $t \in \mathbb{B}$, $a_1, a_2 \in AExp$)

Induction hypothesis: $P(b_1)$ and $P(b_2)$ holds

Induction step: $P(\neg b_1)$, $P(b_1 \land b_2)$ and $P(b_1 \lor b_2)$ holds

Proof (Lemma 3.6).

by structural induction on *a* (omitted)
 by structural induction on *b* (omitted)

Determinism of Evaluation/Execution

Determinism of Execution Relation II

- How to prove that $\langle \boldsymbol{c}, \sigma \rangle \rightarrow \sigma'$ is deterministic (Theorem 3.5)?
- Idea: use induction on the syntactic structure of c

Excursus: Proof by Structural Induction VI

Application: syntax of WHILE statements (Def. 1.2)

Definition: Cmd is the least set which

- contains skip and, for every $x \in Var$ and $a \in AExp$, x := a, and
- contains c_1 ; c_2 , if b then c_1 else c_2 end and while b do c_1 end whenever $b \in BExp$ and $c_1, c_2 \in Cmd$

Induction base: P(skip) and P(x := a) holds (for every $x \in Var$ and $a \in AExp$) Induction hypothesis: $P(c_1)$ and $P(c_2)$ holds Induction step: $P(c_1; c_2)$, $P(\text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end})$ and $P(\text{while } b \text{ do } c_1 \text{ end})$ holds (for every $b \in BExp$)

Determinism of Evaluation/Execution

Determinism of Execution Relation III

- But: proof of Theorem 3.5 fails!
- Problematic case:

c =while b do c_0 end where $\langle b, \sigma \rangle \rightarrow$ true

• Here $\langle \boldsymbol{c}, \sigma \rangle \rightarrow \sigma'$ and $\langle \boldsymbol{c}, \sigma \rangle \rightarrow \sigma''$ require existence of $\sigma_1, \sigma_2 \in \Sigma$ such that

$$\xrightarrow{\text{wh-t)}} \frac{\langle \boldsymbol{b}, \sigma \rangle \to \text{true } \langle \boldsymbol{c}_0, \sigma \rangle \to \sigma_1 \ \langle \boldsymbol{c}, \sigma_1 \rangle \to \sigma'}{\langle \boldsymbol{c}, \sigma \rangle \to \sigma'}$$

and

$$\xrightarrow{\text{(wh-t)}} \frac{\langle \boldsymbol{b}, \sigma \rangle \to \text{true } \langle \boldsymbol{c}_0, \sigma \rangle \to \sigma_2 \ \langle \boldsymbol{c}, \sigma_2 \rangle \to \sigma''}{\langle \boldsymbol{c}, \sigma \rangle \to \sigma''}$$

- c₀ proper substatement of c
 - \Rightarrow induction hypothesis yields $\sigma_1 = \sigma_2$

(

• *c* not proper substatement of $c \Rightarrow$ conclusion $\sigma' = \sigma''$ invalid!

Excursus: Proof by Structural Induction VII

Application: derivation trees of execution relation (Def. 3.2)

(skip): for every $\sigma \in \Sigma$, $\frac{1}{\langle \text{skip}, \sigma \rangle \to \sigma}$ is a derivation tree for $\langle \text{skip}, \sigma \rangle \to \sigma$ (asgn): if *s* is a derivation tree for $\langle a, \sigma \rangle \to z$ (Def. 2.2), then $\frac{s}{\langle x := a, \sigma \rangle \to \sigma[x \mapsto z]}$ is a derivation tree for $\langle \mathbf{x} := \mathbf{a}, \sigma \rangle \rightarrow \sigma[\mathbf{x} \mapsto \mathbf{z}]$ (seq): if s_1 and s_2 are derivation trees for $\langle c_1, \sigma \rangle \to \sigma'$ and, respectively, $\langle c_2, \sigma' \rangle \to \sigma''$, then $\frac{s_1 s_2}{\langle c_1; c_2, \sigma \rangle \to \sigma''}$ is a derivation tree for $\langle c_1; c_2, \sigma \rangle \rightarrow \sigma''$ (if-t): if s_1 and s_2 are derivation trees for $\langle b, \sigma \rangle \rightarrow$ true (Def. 2.7) and, respectively, $\langle c_1, \sigma \rangle \rightarrow \sigma'$, then $\frac{s_1 \ s_2}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end}, \sigma \rangle \to \sigma'} \text{ is a derivation tree for } \langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end}, \sigma \rangle \to \sigma'$ (if-f): analogously (wh-t): if s_1 , s_2 and s_3 are derivation trees for $\langle b, \sigma \rangle \rightarrow$ true (Def. 2.7), $\langle c, \sigma \rangle \rightarrow \sigma'$ and $\langle \text{while } b \text{ do } c \text{ end}, \sigma' \rangle \rightarrow \sigma''$, respectively, then $\frac{s_1 s_2 s_3}{\langle \text{while } b \text{ do } c \text{ end}, \sigma \rangle \rightarrow \sigma''}$ is a derivation tree for (while *b* do *c* end, σ) $\rightarrow \sigma''$ (wh-f): if *s* is a derivation tree for $\langle b, \sigma \rangle \rightarrow$ false (Def. 2.7), then $\frac{s}{\langle \text{while } b \text{ do } c \text{ end}, \sigma \rangle \rightarrow \sigma}$ is a derivation tree for (while *b* do *c* end, σ) $\rightarrow \sigma$

Excursus: Proof by Structural Induction VIII

Application: derivation trees of execution relation (continued)

Induction base: $P\left(\frac{1}{\langle \text{skip}, \sigma \rangle \to \sigma}\right)$ holds for every $\sigma \in \Sigma$, and P(s) holds for every derivation tree s for an arithmetic or Boolean expression. Induction hypothesis: $P(s_1)$, $P(s_2)$ und $P(s_3)$ hold. Induction step: it also holds that • $P\left(\begin{array}{c} S_{1} \\ (asgn) \hline \langle X := a, \sigma \rangle \to \sigma[X \mapsto Z] \end{array}\right)$ • $P\left(\begin{array}{c} S_{1} & S_{2} \\ (seq) \hline \langle C_{1} ; C_{2}, \sigma \rangle \to \sigma'' \end{array}\right)$ • $P\left(\begin{array}{c} S_{1} & S_{2} \\ (if-t) : \hline \langle \text{if } b \text{ then } C_{1} \text{ else } C_{2} \text{ end}, \sigma \rangle \to \sigma' \end{array}\right)$ • $P\left(\begin{array}{c} S_{1} & S_{2} \\ (if-f) : \hline \langle \text{if } b \text{ then } C_{1} \text{ else } C_{2} \text{ end}, \sigma \rangle \to \sigma' \end{array}\right)$ • $P\left(\underset{(\text{wh-f})}{\text{(wh-f)}} \frac{S_1 \ S_2 \ S_3}{\langle \text{while } b \text{ do } c \text{ end}, \sigma \rangle \to \sigma''}\right)$ • $P\left(\underset{(\text{wh-f})}{\text{(wh-f)}} \frac{S_1}{\langle \text{while } b \text{ do } c \text{ end } \sigma \rangle \to \sigma}\right)$

19 of 20 Semantics and Verification of Software Summer Semester 2015

Lecture 3: Operational Semantics of WHILE II

(Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Execution Relation IV

Proof (Theorem 3.5).

To show:

$$\langle \boldsymbol{c}, \sigma \rangle \rightarrow \sigma', \langle \boldsymbol{c}, \sigma \rangle \rightarrow \sigma'' \Rightarrow \sigma' = \sigma''$$

(by structural induction on derivation trees; on the board)

