

Semantics and Verification of Software

Summer Semester 2015

Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Outline of Lecture 3

Recap: Structural Induction & Evaluation Relations

Execution of Statements

Determinism of Evaluation/Execution

Proof by Structural Induction

Proof principle

Given: an inductive set, i.e., a set S whose elements are either

- atomic or
- obtained from atomic elements by (finite) application of certain operations

To show: property P(s) applies to every $s \in S$

Proof: we verify:

Induction base: P(s) holds for every atomic element s

Induction hypothesis: assume that $P(s_1)$, $P(s_2)$ etc.

Induction step: then also $P(f(s_1, \ldots, s_n))$ holds for every operation f of arity

n

Remark: structural induction is a special case of well-founded induction

Evaluation of Arithmetic Expressions

Remember: $a := z | x | a_1 + a_2 | a_1 - a_2 | a_1 * a_2 \in AExp$

Definition (Evaluation relation for arithmetic expressions)

If $a \in AExp$ and $\sigma \in \Sigma$, then $\langle a, \sigma \rangle$ is called a configuration.

Expression a evaluates to $z \in \mathbb{Z}$ in state σ (notation: $\langle a, \sigma \rangle \to z$) if this relationship is derivable by means of the following rules:

Evaluation of Boolean Expressions

Definition ((Strict) evaluation relation for Boolean expressions)

For $b \in BExp$, $\sigma \in \Sigma$, and $t \in \mathbb{B}$, the evaluation relation $\langle b, \sigma \rangle \to t$ is defined by:

Outline of Lecture 3

Recap: Structural Induction & Evaluation Relations

Execution of Statements

Determinism of Evaluation/Execution

Meaning of Statements

Effect of statement = modification of program state

Meaning of Statements

Effect of statement = modification of program state

Example 3.1

Goal: define execution relation \rightarrow such that, e.g.,

$$\langle x := 5, \sigma \rangle \rightarrow \sigma[x \mapsto 5]$$

where for every $\sigma \in \Sigma$, $x, y \in Var$, and $z \in \mathbb{Z}$:

$$\sigma[x \mapsto z](y) := \begin{cases} z & \text{if } y = x \\ \sigma(y) & \text{otherwise} \end{cases}$$

Execution of Statements

Remember:

 $c := \operatorname{skip} | x := a | c_1; c_2 | \text{ if } b \text{ then } c_1 \text{ else } c_2 \text{ end } | \text{ while } b \text{ do } c \text{ end } \in \mathit{Cmd}$

Execution of Statements

Remember:

 $c:= ext{skip}\mid x:=a\mid c_1$; $c_2\mid ext{if } b ext{ then } c_1 ext{ else } c_2 ext{ end } \mid ext{while } b ext{ do } c ext{ end } \in ext{\it Cmd}$

Definition 3.2 (Execution relation for statements)

For $c \in Cmd$ and $\sigma, \sigma' \in \Sigma$, the execution relation $\langle c, \sigma \rangle \to \sigma'$ is defined by:

$$\begin{array}{c} \langle a,\sigma\rangle \to z \\ \hline \langle \text{skip}\rangle \overline{\langle} \text{skip},\sigma\rangle \to \sigma \\ \hline \langle c_1,\sigma\rangle \to \sigma' \ \langle c_2,\sigma'\rangle \to \sigma'' \\ \hline \langle c_1;c_2,\sigma\rangle \to \sigma'' \\ \hline \langle b,\sigma\rangle \to \text{false} \ \langle c_2,\sigma\rangle \to \sigma' \\ \hline \langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end},\sigma\rangle \to \sigma' \\ \hline \langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end},\sigma\rangle \to \sigma' \\ \hline \langle \text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end},\sigma\rangle \to \sigma' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma\rangle \to \sigma' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma'\rangle \to \sigma'' \\ \hline \langle \text{while } b$$

Semantics and Verification of Software

An Execution Example

Example 3.3

•
$$c := y := 1$$
; while $\underbrace{\neg(x=1)}_{b} \text{do } \underbrace{y := y*x}_{c_1}$; $\underbrace{x := x-1}_{c_2}$ end

- Claim: $\langle \boldsymbol{c}, \sigma \rangle \to \sigma_{1,6}$ for every $\sigma \in \Sigma$ with $\sigma(x) = 3$
- Notation: $\sigma_{i,j}$ means $\sigma(\mathbf{x}) = i$, $\sigma(\mathbf{y}) = j$
- Derivation tree: on the board

Semantics and Verification of Software

Non-Terminating Statements

Corollary 3.4

The execution relation for statements is not total, i.e., there exist $c \in Cmd$ and $\sigma \in \Sigma$ such that $\langle c, \sigma \rangle \to \sigma'$ for no $\sigma' \in \Sigma$.

Non-Terminating Statements

Corollary 3.4

The execution relation for statements is not total, i.e., there exist $c \in Cmd$ and $\sigma \in \Sigma$ such that $\langle c, \sigma \rangle \to \sigma'$ for no $\sigma' \in \Sigma$.

Proof.

Example: c = while true do skip end (proof by contradiction; on the board)

Outline of Lecture 3

Recap: Structural Induction & Evaluation Relations

Execution of Statements

Determinism of Evaluation/Execution

Determinism of Execution Relation I

This operational semantics is well defined in the following sense:

Theorem 3.5

The execution relation for statements is deterministic, i.e., whenever $c \in Cmd$ and $\sigma, \sigma', \sigma'' \in \Sigma$ such that $\langle c, \sigma \rangle \to \sigma'$ and $\langle c, \sigma \rangle \to \sigma''$, then $\sigma' = \sigma''$.

Determinism of Execution Relation I

This operational semantics is well defined in the following sense:

Theorem 3.5

The execution relation for statements is deterministic, i.e., whenever $c \in Cmd$ and $\sigma, \sigma', \sigma'' \in \Sigma$ such that $\langle c, \sigma \rangle \to \sigma'$ and $\langle c, \sigma \rangle \to \sigma''$, then $\sigma' = \sigma''$.

The proof is based on the corresponding result for expressions.

Determinism of Evaluation Relations

Lemma 3.6

- 1. For every $a \in AExp$, $\sigma \in \Sigma$, and $z, z' \in \mathbb{Z}$: $\langle a, \sigma \rangle \to z$ and $\langle a, \sigma \rangle \to z'$ implies z = z'.
- 2. For every $b \in BExp$, $\sigma \in \Sigma$, and $t, t' \in \mathbb{B}$: $\langle b, \sigma \rangle \to t$ and $\langle b, \sigma \rangle \to t'$ implies t = t'.

Determinism of Evaluation Relations

Lemma 3.6

- 1. For every $a \in AExp$, $\sigma \in \Sigma$, and $z, z' \in \mathbb{Z}$: $\langle a, \sigma \rangle \to z$ and $\langle a, \sigma \rangle \to z'$ implies z = z'.
- 2. For every $b \in BExp$, $\sigma \in \Sigma$, and $t, t' \in \mathbb{B}$: $\langle b, \sigma \rangle \to t$ and $\langle b, \sigma \rangle \to t'$ implies t = t'.

Remarks:

Lemma 3.6(1) is not implied by Lemma 2.6

$$("\sigma|_{FV(a)} = \sigma'|_{FV(a)} \Rightarrow (\langle a, \sigma \rangle \rightarrow z \iff \langle a, \sigma' \rangle \rightarrow z)")!$$

The latter just implies

$$\{z \in \mathbb{Z} \mid \langle a, \sigma \rangle \to z\} = \{z \in \mathbb{Z} \mid \langle a, \sigma' \rangle \to z\}$$

while Lemma 3.6(1) states that

$$|\{z \in \mathbb{Z} \mid \langle a, \sigma \rangle \to z\}| \leq 1.$$

Lemma 3.6 can be shown by induction on the structure of expressions.

Excursus: Proof by Structural Induction V

Application: Boolean expressions (Def. 1.2)

Definition: BExp is the least set which

- contains the truth values $t \in \mathbb{B}$ and, for every $a_1, a_2 \in AExp$, $a_1 = a_2$ and $a_1 > a_2$, and
- contains $\neg b_1$, $b_1 \wedge b_2$ and $b_1 \vee b_2$ whenever $b_1, b_2 \in BExp$

Induction base: P(t), $P(a_1=a_2)$ and $P(a_1>a_2)$ holds (for every $t \in \mathbb{B}$, $a_1, a_2 \in AExp$)

Induction hypothesis: $P(b_1)$ and $P(b_2)$ holds

Induction step: $P(\neg b_1)$, $P(b_1 \land b_2)$ and $P(b_1 \lor b_2)$ holds

Excursus: Proof by Structural Induction V

Application: Boolean expressions (Def. 1.2)

Definition: BExp is the least set which

- contains the truth values $t \in \mathbb{B}$ and, for every $a_1, a_2 \in AExp$, $a_1 = a_2$ and $a_1 > a_2$, and
- contains $\neg b_1$, $b_1 \wedge b_2$ and $b_1 \vee b_2$ whenever $b_1, b_2 \in BExp$

Induction base: P(t), $P(a_1=a_2)$ and $P(a_1>a_2)$ holds (for every $t \in \mathbb{B}$, $a_1, a_2 \in AExp$)

Induction hypothesis: $P(b_1)$ and $P(b_2)$ holds

Induction step: $P(\neg b_1)$, $P(b_1 \land b_2)$ and $P(b_1 \lor b_2)$ holds

Proof (Lemma 3.6).

- 1. by structural induction on *a* (omitted)
- 2. by structural induction on *b* (omitted)

Determinism of Execution Relation II

- How to prove that $\langle c, \sigma \rangle \to \sigma'$ is deterministic (Theorem 3.5)?
- Idea: use induction on the syntactic structure of c

Excursus: Proof by Structural Induction VI

Application: syntax of WHILE statements (Def. 1.2)

Definition: Cmd is the least set which

- contains skip and, for every $x \in Var$ and $a \in AExp$, x := a, and
- contains c_1 ; c_2 , if b then c_1 else c_2 end and while b do c_1 end whenever $b \in BExp$ and c_1 , $c_2 \in Cmd$

Induction base: P(skip) and P(x := a) holds (for every $x \in Var$ and $a \in AExp$)

Induction hypothesis: $P(c_1)$ and $P(c_2)$ holds

Induction step: $P(c_1; c_2)$, $P(\text{if } b \text{ then } c_1 \text{ else } c_2 \text{ end})$ and $P(\text{while } b \text{ do } c_1 \text{ end})$

holds (for every $b \in BExp$)

Determinism of Execution Relation III

But: proof of Theorem 3.5 fails!

Determinism of Execution Relation III

- But: proof of Theorem 3.5 fails!
- Problematic case:

 $c = exttt{while } b ext{ do } c_0 ext{ end } ext{ where } \langle b, \sigma
angle o ext{true}$

Determinism of Execution Relation III

- But: proof of Theorem 3.5 fails!
- Problematic case:

$$c = exttt{while } b ext{ do } c_0 ext{ end } ext{ where } \langle b, \sigma
angle o ext{true}$$

• Here $\langle c, \sigma \rangle \to \sigma'$ and $\langle c, \sigma \rangle \to \sigma''$ require existence of $\sigma_1, \sigma_2 \in \Sigma$ such that

$$\frac{\langle \mathbf{b}, \sigma \rangle \rightarrow \mathsf{true} \ \langle \mathbf{c}_0, \sigma \rangle \rightarrow \sigma_1 \ \langle \mathbf{c}, \sigma_1 \rangle \rightarrow \sigma'}{\langle \mathbf{c}, \sigma \rangle \rightarrow \sigma'}$$

and

$$\frac{\langle \textbf{\textit{b}}, \sigma \rangle \rightarrow \mathsf{true} \ \langle \textbf{\textit{c}}_0, \sigma \rangle \rightarrow \sigma_2 \ \langle \textbf{\textit{c}}, \sigma_2 \rangle \rightarrow \sigma''}{\langle \textbf{\textit{c}}, \sigma \rangle \rightarrow \sigma''}$$

Determinism of Execution Relation III

- But: proof of Theorem 3.5 fails!
- Problematic case:

$$c = \text{while } b \text{ do } c_0 \text{ end} \quad \text{where} \quad \langle b, \sigma \rangle \rightarrow \text{true}$$

• Here $\langle c, \sigma \rangle \to \sigma'$ and $\langle c, \sigma \rangle \to \sigma''$ require existence of $\sigma_1, \sigma_2 \in \Sigma$ such that

$$\frac{\langle \textbf{\textit{b}}, \sigma \rangle \rightarrow \text{true } \langle \textbf{\textit{c}}_0, \sigma \rangle \rightarrow \textbf{\textit{\sigma}}_1 \langle \textbf{\textit{c}}, \textbf{\textit{\sigma}}_1 \rangle \rightarrow \sigma'}{\langle \textbf{\textit{c}}, \sigma \rangle \rightarrow \sigma'}$$

and

$$\frac{\langle \textbf{\textit{b}}, \sigma \rangle \rightarrow \mathsf{true} \ \langle \textbf{\textit{c}}_0, \sigma \rangle \rightarrow \sigma_{\mathbf{2}} \ \langle \textbf{\textit{c}}, \sigma_{\mathbf{2}} \rangle \rightarrow \sigma''}{\langle \textbf{\textit{c}}, \sigma \rangle \rightarrow \sigma''}$$

- c₀ proper substatement of c
 - \Rightarrow induction hypothesis yields $\sigma_1 = \sigma_2$

Determinism of Execution Relation III

- But: proof of Theorem 3.5 fails!
- Problematic case:

$$c = \text{while } b \text{ do } c_0 \text{ end} \quad \text{where} \quad \langle b, \sigma \rangle \rightarrow \text{true}$$

• Here $\langle c, \sigma \rangle \to \sigma'$ and $\langle c, \sigma \rangle \to \sigma''$ require existence of $\sigma_1, \sigma_2 \in \Sigma$ such that

$$\frac{\langle \boldsymbol{b}, \sigma \rangle \rightarrow \mathsf{true} \ \langle \boldsymbol{c}_0, \sigma \rangle \rightarrow \sigma_1 \ \langle \boldsymbol{c}, \sigma_1 \rangle \rightarrow \boldsymbol{\sigma'}}{\langle \boldsymbol{c}, \sigma \rangle \rightarrow \boldsymbol{\sigma'}}$$

and

$$rac{\langle m{b}, \sigma
angle
ightarrow ext{true } \langle m{c}, \sigma
angle
ightarrow \sigma_2 \ \langle m{c}, \sigma_2
angle
ightarrow m{\sigma''}}{\langle m{c}, \sigma
angle
ightarrow m{\sigma''}}$$

- c₀ proper substatement of c
 - \Rightarrow induction hypothesis yields $\sigma_1 = \sigma_2$
- c not proper substatement of $c \Rightarrow \text{conclusion } \sigma' = \sigma'' \text{ invalid!}$

Excursus: Proof by Structural Induction VII

Application: derivation trees of execution relation (Def. 3.2)

```
(skip): for every \sigma \in \Sigma, \frac{}{\langle \mathtt{skip}, \sigma \rangle \to \sigma} is a derivation tree for \langle \mathtt{skip}, \sigma \rangle \to \sigma
(asgn): if s is a derivation tree for \langle a, \sigma \rangle \to z (Def. 2.2), then \frac{s}{\langle x := a, \sigma \rangle \to \sigma[x \mapsto z]} is a derivation tree for
               \langle x := a, \sigma \rangle \to \sigma[x \mapsto z]
  (seq): if s_1 and s_2 are derivation trees for \langle c_1, \sigma \rangle \to \sigma' and, respectively, \langle c_2, \sigma' \rangle \to \sigma'', then \frac{s_1 \ s_2}{\langle c_1 : c_2, \sigma \rangle \to \sigma''} is a
               derivation tree for \langle c_1; c_2, \sigma \rangle \rightarrow \sigma''
    (if-t): if s_1 and s_2 are derivation trees for \langle b, \sigma \rangle \to \text{true} (Def. 2.7) and, respectively, \langle c_1, \sigma \rangle \to \sigma', then
                 \dfrac{s_1 \ s_2}{\langle 	ext{if } b 	ext{ then } c_1 	ext{ else } c_2 	ext{ end}, \sigma 
angle 	o \sigma'} is a derivation tree for \langle 	ext{if } b 	ext{ then } c_1 	ext{ else } c_2 	ext{ end}, \sigma 
angle 	o \sigma'
    (if-f): analogously
 (wh-t): if s_1, s_2 and s_3 are derivation trees for \langle b, \sigma \rangle \to \text{true} (Def. 2.7), \langle c, \sigma \rangle \to \sigma' and
                \langle \text{while } b \text{ do } c \text{ end}, \sigma' \rangle \to \sigma'', respectively, then \frac{s_1 \ s_2 \ s_3}{\langle \text{while } b \text{ do } c \text{ end}, \sigma \rangle \to \sigma''} is a derivation tree for
                \langle \mathtt{while} \ b \ \mathtt{do} \ c \ \mathtt{end}, \sigma \rangle \to \sigma''
 (wh-f): if s is a derivation tree for \langle b, \sigma \rangle \to \text{false} (Def. 2.7), then \frac{s}{\langle \text{while } b \text{ do } c \text{ end. } \sigma \rangle \to \sigma} is a derivation tree
               for \langle \text{while } b \text{ do } c \text{ end}, \sigma \rangle \rightarrow \sigma
```


Excursus: Proof by Structural Induction VIII

Application: derivation trees of execution relation (continued)

Induction base: $P\left(\frac{}{\langle \mathtt{skip}, \sigma \rangle \to \sigma}\right)$ holds for every $\sigma \in \Sigma$, and P(s) holds for

every derivation tree s for an arithmetic or Boolean expression.

Induction hypothesis: $P(s_1)$, $P(s_2)$ und $P(s_3)$ hold.

Induction step: it also holds that

•
$$P\left(\frac{S_{1}}{\langle x := a, \sigma \rangle \rightarrow \sigma[x \mapsto z]}\right)$$
• $P\left(\frac{S_{1} S_{2}}{\langle c_{1} ; c_{2}, \sigma \rangle \rightarrow \sigma''}\right)$
• $P\left(\frac{S_{1} S_{2}}{\langle \text{if } b \text{ then } c_{1} \text{ else } c_{2} \text{ end, } \sigma \rangle \rightarrow \sigma'}\right)$
• $P\left(\frac{S_{1} S_{2}}{\langle \text{if } b \text{ then } c_{1} \text{ else } c_{2} \text{ end, } \sigma \rangle \rightarrow \sigma'}\right)$

•
$$P\left(\frac{S_1 \ S_2 \ S_3}{\langle \text{while } b \text{ do } c \text{ end, } \sigma \rangle \to \sigma''}\right)$$
• $P\left(\frac{S_1}{\langle \text{while } b \text{ do } c \text{ end, } \sigma \rangle \to \sigma}\right)$

Determinism of Execution Relation IV

Proof (Theorem 3.5).

To show:

$$\langle \boldsymbol{c}, \sigma \rangle \to \sigma', \langle \boldsymbol{c}, \sigma \rangle \to \sigma'' \Rightarrow \sigma' = \sigma''$$

(by structural induction on derivation trees; on the board)

