
Semantics and Verification of Software
Summer Semester 2015

Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Schedule

• Lecture Tue 14:15–15:45 AH 2 (starting 14 April)
• Lecture Thu 11:45–13:15 AH 2 (starting 9 April)
• Exercise class Wed 15:00–16:30 AH 6 (starting 22 April)

2 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Recap: Syntax of WHILE

Outline of Lecture 2

Recap: Syntax of WHILE

Operational Semantics of WHILE

Evaluation of Arithmetic Expressions

Excursus: Proof by Structural Induction

Evaluation of Boolean Expressions

3 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Recap: Syntax of WHILE

Syntactic Categories

WHILE: simple imperative programming language without procedures or advanced
data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {true, false} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) c

4 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Recap: Syntax of WHILE

Syntax of WHILE Programs

Definition (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end ∈ Cmd

Remarks: we assume that
• the syntax of numbers, truth values and variables is predefined

(i.e., no “lexical analysis”)
• the syntactic interpretation of ambiguous constructs (expressions) is uniquely determined

(by brackets or priorities)

5 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Operational Semantics of WHILE

Outline of Lecture 2

Recap: Syntax of WHILE

Operational Semantics of WHILE

Evaluation of Arithmetic Expressions

Excursus: Proof by Structural Induction

Evaluation of Boolean Expressions

6 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Operational Semantics of WHILE

Operational Semantics of WHILE

• Idea: define meaning of programs by specifying its behavior being executed on an
(abstract) machine

• Here: evaluation/execution relation for program fragments (expressions, statements)
• Approach based on Structural Operational Semantics (SOS)

– G.D. Plotkin: A structural approach to operational semantics, DAIMI FN-19, Computer Science
Department, Aarhus University, 1981

• Employs derivation rules of the form

(Name)
Premise(s)
Conclusion

[side conditions]

– meaning: if every premise [and all side conditions] are fulfilled, then conclusion can be drawn
– a rule with no premises is called an axiom

• Derivation rules can be composed to form derivation trees with axioms as leafs (formal
definition later)

7 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Operational Semantics of WHILE

Operational Semantics of WHILE

• Idea: define meaning of programs by specifying its behavior being executed on an
(abstract) machine
• Here: evaluation/execution relation for program fragments (expressions, statements)

• Approach based on Structural Operational Semantics (SOS)
– G.D. Plotkin: A structural approach to operational semantics, DAIMI FN-19, Computer Science

Department, Aarhus University, 1981

• Employs derivation rules of the form

(Name)
Premise(s)
Conclusion

[side conditions]

– meaning: if every premise [and all side conditions] are fulfilled, then conclusion can be drawn
– a rule with no premises is called an axiom

• Derivation rules can be composed to form derivation trees with axioms as leafs (formal
definition later)

7 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Operational Semantics of WHILE

Operational Semantics of WHILE

• Idea: define meaning of programs by specifying its behavior being executed on an
(abstract) machine
• Here: evaluation/execution relation for program fragments (expressions, statements)
• Approach based on Structural Operational Semantics (SOS)

– G.D. Plotkin: A structural approach to operational semantics, DAIMI FN-19, Computer Science
Department, Aarhus University, 1981

• Employs derivation rules of the form

(Name)
Premise(s)
Conclusion

[side conditions]

– meaning: if every premise [and all side conditions] are fulfilled, then conclusion can be drawn
– a rule with no premises is called an axiom

• Derivation rules can be composed to form derivation trees with axioms as leafs (formal
definition later)

7 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Operational Semantics of WHILE

Operational Semantics of WHILE

• Idea: define meaning of programs by specifying its behavior being executed on an
(abstract) machine
• Here: evaluation/execution relation for program fragments (expressions, statements)
• Approach based on Structural Operational Semantics (SOS)

– G.D. Plotkin: A structural approach to operational semantics, DAIMI FN-19, Computer Science
Department, Aarhus University, 1981

• Employs derivation rules of the form

(Name)
Premise(s)
Conclusion

[side conditions]

– meaning: if every premise [and all side conditions] are fulfilled, then conclusion can be drawn
– a rule with no premises is called an axiom

• Derivation rules can be composed to form derivation trees with axioms as leafs (formal
definition later)

7 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Operational Semantics of WHILE

Operational Semantics of WHILE

• Idea: define meaning of programs by specifying its behavior being executed on an
(abstract) machine
• Here: evaluation/execution relation for program fragments (expressions, statements)
• Approach based on Structural Operational Semantics (SOS)

– G.D. Plotkin: A structural approach to operational semantics, DAIMI FN-19, Computer Science
Department, Aarhus University, 1981

• Employs derivation rules of the form

(Name)
Premise(s)
Conclusion

[side conditions]

– meaning: if every premise [and all side conditions] are fulfilled, then conclusion can be drawn
– a rule with no premises is called an axiom

• Derivation rules can be composed to form derivation trees with axioms as leafs (formal
definition later)

7 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Outline of Lecture 2

Recap: Syntax of WHILE

Operational Semantics of WHILE

Evaluation of Arithmetic Expressions

Excursus: Proof by Structural Induction

Evaluation of Boolean Expressions

8 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Program States

• Meaning of expression = its value (in the usual sense)
• Depends on the values of the variables in the expression

Definition 2.1 (Program state)

A (program) state is an element of the set

Σ := {σ | σ : Var → Z},
called the state space.

Thus σ(x) denotes the value of x ∈ Var in state σ ∈ Σ.

9 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Program States

• Meaning of expression = its value (in the usual sense)
• Depends on the values of the variables in the expression

Definition 2.1 (Program state)

A (program) state is an element of the set

Σ := {σ | σ : Var → Z},
called the state space.

Thus σ(x) denotes the value of x ∈ Var in state σ ∈ Σ.

9 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions I

Remember: a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

Definition 2.2 (Evaluation relation for arithmetic expressions)

If a ∈ AExp and σ ∈ Σ, then 〈a, σ〉 is called a configuration.

Expression a evaluates to z ∈ Z in state σ (notation: 〈a, σ〉 → z) if this relationship
is derivable by means of the following rules:
Axioms:

〈z, σ〉 → z 〈x, σ〉 → σ(x)

Rules:
〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1+a2, σ〉 → z
where z := z1 + z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1-a2, σ〉 → z
where z := z1 − z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1*a2, σ〉 → z
where z := z1 · z2

10 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions I

Remember: a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

Definition 2.2 (Evaluation relation for arithmetic expressions)

If a ∈ AExp and σ ∈ Σ, then 〈a, σ〉 is called a configuration.

Expression a evaluates to z ∈ Z in state σ (notation: 〈a, σ〉 → z) if this relationship
is derivable by means of the following rules:
Axioms:

〈z, σ〉 → z 〈x, σ〉 → σ(x)

Rules:
〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1+a2, σ〉 → z
where z := z1 + z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1-a2, σ〉 → z
where z := z1 − z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1*a2, σ〉 → z
where z := z1 · z2

10 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 → 6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 → 7

〈(x+3)*(y-2), σ〉 → 42

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 → 6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 → 7

〈(x+3)*(y-2), σ〉 →

42

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 →

6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 →

7

〈(x+3)*(y-2), σ〉 →

42

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1*a2, σ〉 → z
where z := z1 · z2

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 →

3

〈3, σ〉 →

3

〈x+3, σ〉 →

6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 →

7

〈(x+3)*(y-2), σ〉 →

42

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1+a2, σ〉 → z
where z := z1 + z2

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 →

3

〈x+3, σ〉 →

6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 →

7

〈(x+3)*(y-2), σ〉 →

42

〈x, σ〉 → σ(x)

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 →

6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 →

7

〈(x+3)*(y-2), σ〉 →

42

〈z, σ〉 → z

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 → 6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 →

7

〈(x+3)*(y-2), σ〉 →

42

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1+a2, σ〉 → z
where z := z1 + z2

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 → 6

〈y, σ〉 →

9

〈2, σ〉 →

2

〈y-2, σ〉 →

7

〈(x+3)*(y-2), σ〉 →

42

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1-a2, σ〉 → z
where z := z1 − z2

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 → 6

〈y, σ〉 → 9 〈2, σ〉 →

2

〈y-2, σ〉 →

7

〈(x+3)*(y-2), σ〉 →

42

〈x, σ〉 → σ(x)

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 → 6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 →

7

〈(x+3)*(y-2), σ〉 →

42

〈z, σ〉 → z

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 → 6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 → 7

〈(x+3)*(y-2), σ〉 →

42

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1-a2, σ〉 → z
where z := z1 − z2

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 → 6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 → 7

〈(x+3)*(y-2), σ〉 → 42

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1*a2, σ〉 → z
where z := z1 · z2

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 → 6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 → 7

〈(x+3)*(y-2), σ〉 → 42

Here: structure of derivation tree = structure of program fragment
(not generally true)

11 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Free Variables I

First formal result: value of an expression only depends on valuation of variables
which occur (freely) in the expression

Definition 2.4 (Free variables)

The set of free variables of an expression is given by the function

FV : AExp → 2Var

where
FV (z) := ∅ FV (a1+a2) := FV (a1) ∪ FV (a2)
FV (x) := {x} FV (a1-a2) := FV (a1) ∪ FV (a2)

FV (a1*a2) := FV (a1) ∪ FV (a2)

Result will be shown by structural induction on the expression

12 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Free Variables I

First formal result: value of an expression only depends on valuation of variables
which occur (freely) in the expression

Definition 2.4 (Free variables)

The set of free variables of an expression is given by the function

FV : AExp → 2Var

where
FV (z) := ∅ FV (a1+a2) := FV (a1) ∪ FV (a2)
FV (x) := {x} FV (a1-a2) := FV (a1) ∪ FV (a2)

FV (a1*a2) := FV (a1) ∪ FV (a2)

Result will be shown by structural induction on the expression

12 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Arithmetic Expressions

Free Variables I

First formal result: value of an expression only depends on valuation of variables
which occur (freely) in the expression

Definition 2.4 (Free variables)

The set of free variables of an expression is given by the function

FV : AExp → 2Var

where
FV (z) := ∅ FV (a1+a2) := FV (a1) ∪ FV (a2)
FV (x) := {x} FV (a1-a2) := FV (a1) ∪ FV (a2)

FV (a1*a2) := FV (a1) ∪ FV (a2)

Result will be shown by structural induction on the expression

12 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Outline of Lecture 2

Recap: Syntax of WHILE

Operational Semantics of WHILE

Evaluation of Arithmetic Expressions

Excursus: Proof by Structural Induction

Evaluation of Boolean Expressions

13 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction I

Proof principle

Given: an inductive set, i.e., a set S whose elements are either
• atomic or
• obtained from atomic elements by (finite) application of certain operations

To show: property P(s) applies to every s ∈ S
Proof: we verify:

Induction base: P(s) holds for every atomic element s
Induction hypothesis: assume that P(s1), P(s2) etc.
Induction step: then also P(f (s1, . . . , sn)) holds for every operation f of arity

n

Remark: structural induction is a special case of well-founded induction

14 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction I

Proof principle

Given: an inductive set, i.e., a set S whose elements are either
• atomic or
• obtained from atomic elements by (finite) application of certain operations

To show: property P(s) applies to every s ∈ S
Proof: we verify:

Induction base: P(s) holds for every atomic element s
Induction hypothesis: assume that P(s1), P(s2) etc.
Induction step: then also P(f (s1, . . . , sn)) holds for every operation f of arity

n

Remark: structural induction is a special case of well-founded induction

14 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction II

Application: natural numbers (“mathematical induction”)

Definition: N is the least set which
• contains 0 and
• contains n + 1 whenever n ∈ N

Induction base: P(0) holds
Induction hypothesis: P(n) holds
Induction step: P(n + 1) holds

Generalization: complete (strong, course-of-values) induction
• induction step: P(0),P(1), . . . ,P(n)⇒ P(n + 1)

• corresponds to well-founded induction over natural numbers

15 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction II

Application: natural numbers (“mathematical induction”)

Definition: N is the least set which
• contains 0 and
• contains n + 1 whenever n ∈ N

Induction base: P(0) holds
Induction hypothesis: P(n) holds
Induction step: P(n + 1) holds

Generalization: complete (strong, course-of-values) induction
• induction step: P(0),P(1), . . . ,P(n)⇒ P(n + 1)

• corresponds to well-founded induction over natural numbers

15 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that P(n) :
∑n

i=1 i = n(n+1)
2 holds for every n ∈ N.

P(0) holds:
∑0

i=1 i = 0 = 0(0+1)
2 X

Assume P(n):
∑n

i=1 i = n(n+1)
2

Show P(n + 1):
∑n+1

i=1 i =
∑n

i=1 i + (n + 1)

= n(n+1)
2 + (n + 1)

= n(n+1)
2 + 2(n+1)

2

= (n+2)(n+1)
2

= (n+1)((n+1)+1)
2 X

16 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that P(n) :
∑n

i=1 i = n(n+1)
2 holds for every n ∈ N.

P(0) holds:
∑0

i=1 i = 0 = 0(0+1)
2 X

Assume P(n):
∑n

i=1 i = n(n+1)
2

Show P(n + 1):
∑n+1

i=1 i =
∑n

i=1 i + (n + 1)

= n(n+1)
2 + (n + 1)

= n(n+1)
2 + 2(n+1)

2

= (n+2)(n+1)
2

= (n+1)((n+1)+1)
2 X

16 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that P(n) :
∑n

i=1 i = n(n+1)
2 holds for every n ∈ N.

P(0) holds:
∑0

i=1 i = 0 = 0(0+1)
2 X

Assume P(n):
∑n

i=1 i = n(n+1)
2

Show P(n + 1):
∑n+1

i=1 i =
∑n

i=1 i + (n + 1)

= n(n+1)
2 + (n + 1)

= n(n+1)
2 + 2(n+1)

2

= (n+2)(n+1)
2

= (n+1)((n+1)+1)
2 X

16 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that P(n) :
∑n

i=1 i = n(n+1)
2 holds for every n ∈ N.

P(0) holds:
∑0

i=1 i = 0 = 0(0+1)
2 X

Assume P(n):
∑n

i=1 i = n(n+1)
2

Show P(n + 1):
∑n+1

i=1 i =
∑n

i=1 i + (n + 1)

= n(n+1)
2 + (n + 1)

= n(n+1)
2 + 2(n+1)

2

= (n+2)(n+1)
2

= (n+1)((n+1)+1)
2 X

16 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that P(n) :
∑n

i=1 i = n(n+1)
2 holds for every n ∈ N.

P(0) holds:
∑0

i=1 i = 0 = 0(0+1)
2 X

Assume P(n):
∑n

i=1 i = n(n+1)
2

Show P(n + 1):
∑n+1

i=1 i =
∑n

i=1 i + (n + 1)

= n(n+1)
2 + (n + 1)

= n(n+1)
2 + 2(n+1)

2

= (n+2)(n+1)
2

= (n+1)((n+1)+1)
2 X

16 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that P(n) :
∑n

i=1 i = n(n+1)
2 holds for every n ∈ N.

P(0) holds:
∑0

i=1 i = 0 = 0(0+1)
2 X

Assume P(n):
∑n

i=1 i = n(n+1)
2

Show P(n + 1):
∑n+1

i=1 i =
∑n

i=1 i + (n + 1)

= n(n+1)
2 + (n + 1)

= n(n+1)
2 + 2(n+1)

2

= (n+2)(n+1)
2

= (n+1)((n+1)+1)
2 X

16 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that P(n) :
∑n

i=1 i = n(n+1)
2 holds for every n ∈ N.

P(0) holds:
∑0

i=1 i = 0 = 0(0+1)
2 X

Assume P(n):
∑n

i=1 i = n(n+1)
2

Show P(n + 1):
∑n+1

i=1 i =
∑n

i=1 i + (n + 1)

= n(n+1)
2 + (n + 1)

= n(n+1)
2 + 2(n+1)

2

= (n+2)(n+1)
2

= (n+1)((n+1)+1)
2 X

16 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that P(n) :
∑n

i=1 i = n(n+1)
2 holds for every n ∈ N.

P(0) holds:
∑0

i=1 i = 0 = 0(0+1)
2 X

Assume P(n):
∑n

i=1 i = n(n+1)
2

Show P(n + 1):
∑n+1

i=1 i =
∑n

i=1 i + (n + 1)

= n(n+1)
2 + (n + 1)

= n(n+1)
2 + 2(n+1)

2

= (n+2)(n+1)
2

= (n+1)((n+1)+1)
2 X

16 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Excursus: Proof by Structural Induction IV

Application: arithmetic expressions (Def. 1.2)

Definition: AExp is the least set which
• contains all integers z ∈ Z and all variables x ∈ Var and
• contains a1+a2, a1-a2 and a1*a2 whenever a1, a2 ∈ AExp

Induction base: P(z) and P(x) holds (for every z ∈ Z and x ∈ Var)
Induction hypothesis: P(a1) and P(a2) holds
Induction step: P(a1+a2), P(a1-a2) and P(a1*a2) holds

17 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Free Variables II

Lemma 2.6

Let a ∈ AExp and σ, σ′ ∈ Σ such that σ(x) = σ′(x) for every x ∈ FV (a). Then, for
every z ∈ Z,

〈a, σ〉 → z ⇐⇒ 〈a, σ′〉 → z.

Proof.

by structural induction on a (on the board)

18 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Excursus: Proof by Structural Induction

Free Variables II

Lemma 2.6

Let a ∈ AExp and σ, σ′ ∈ Σ such that σ(x) = σ′(x) for every x ∈ FV (a). Then, for
every z ∈ Z,

〈a, σ〉 → z ⇐⇒ 〈a, σ′〉 → z.

Proof.

by structural induction on a (on the board)

18 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Boolean Expressions

Outline of Lecture 2

Recap: Syntax of WHILE

Operational Semantics of WHILE

Evaluation of Arithmetic Expressions

Excursus: Proof by Structural Induction

Evaluation of Boolean Expressions

19 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Boolean Expressions

Evaluation of Boolean Expressions I

Definition 2.7 ((Strict) evaluation relation for Boolean expressions)

For b ∈ BExp, σ ∈ Σ, and t ∈ B, the evaluation relation 〈b, σ〉 → t is defined by:

〈t, σ〉 → t
〈a1, σ〉 → z 〈a2, σ〉 → z

〈a1=a2, σ〉 → true

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1=a2, σ〉 → false
if z1 6= z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → true
if z1 > z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → false
if z1 ≤ z2

〈b, σ〉 → false

〈¬b, σ〉 → true

〈b, σ〉 → true

〈¬b, σ〉 → false
〈b1, σ〉 → true 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → true

〈b1, σ〉 → true 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false
〈b1, σ〉 → false 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → false 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false
(∨ analogously)

20 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Boolean Expressions

Evaluation of Boolean Expressions II

Remarks:
• Binary Boolean operators ∧ and ∨ are interpreted as strict, i.e., always evaluate both

arguments.

Important in situations like

while p <> nil and p^.key < val do ...!

(see following slides for alternatives)

• FV : BExp → 2Var can be defined in analogy to Def. 2.4.
• Lemma 2.6 holds analogously for Boolean expressions, i.e., the value of b ∈ BExp does not

depend on variables in Var \ FV (b).

21 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Boolean Expressions

Evaluation of Boolean Expressions II

Remarks:
• Binary Boolean operators ∧ and ∨ are interpreted as strict, i.e., always evaluate both

arguments.

Important in situations like

while p <> nil and p^.key < val do ...!

(see following slides for alternatives)
• FV : BExp → 2Var can be defined in analogy to Def. 2.4.

• Lemma 2.6 holds analogously for Boolean expressions, i.e., the value of b ∈ BExp does not
depend on variables in Var \ FV (b).

21 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Boolean Expressions

Evaluation of Boolean Expressions II

Remarks:
• Binary Boolean operators ∧ and ∨ are interpreted as strict, i.e., always evaluate both

arguments.

Important in situations like

while p <> nil and p^.key < val do ...!

(see following slides for alternatives)
• FV : BExp → 2Var can be defined in analogy to Def. 2.4.
• Lemma 2.6 holds analogously for Boolean expressions, i.e., the value of b ∈ BExp does not

depend on variables in Var \ FV (b).

21 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Boolean Expressions

Evaluation of Boolean Expressions III

Definition 2.8 (Sequential evaluation of Boolean expressions)

For b ∈ BExp, σ ∈ Σ, and t ∈ B, the sequential evaluation relation 〈b, σ〉 → t is
defined by the following rules:

...
〈b1, σ〉 → false

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → true 〈b2, σ〉 → t

〈b1 ∧ b2, σ〉 → t

〈b1, σ〉 → true

〈b1 ∨ b2, σ〉 → true

〈b1, σ〉 → false 〈b2, σ〉 → t

〈b1 ∨ b2, σ〉 → t

Remarks: yields same result as strict evaluation
• (Boolean) expressions have no side effects (assignments, exceptions, ...)
• evaluation always terminates

22 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Boolean Expressions

Evaluation of Boolean Expressions III

Definition 2.8 (Sequential evaluation of Boolean expressions)

For b ∈ BExp, σ ∈ Σ, and t ∈ B, the sequential evaluation relation 〈b, σ〉 → t is
defined by the following rules:

...
〈b1, σ〉 → false

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → true 〈b2, σ〉 → t

〈b1 ∧ b2, σ〉 → t

〈b1, σ〉 → true

〈b1 ∨ b2, σ〉 → true

〈b1, σ〉 → false 〈b2, σ〉 → t

〈b1 ∨ b2, σ〉 → t

Remarks: yields same result as strict evaluation
• (Boolean) expressions have no side effects (assignments, exceptions, ...)
• evaluation always terminates

22 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

Evaluation of Boolean Expressions

Evaluation of Boolean Expressions IV

Definition 2.9 (Parallel evaluation of Boolean expressions)

For b ∈ BExp, σ ∈ Σ, and t ∈ B, the parallel evaluation relation 〈b, σ〉 → t is
defined by the following rules:

...
〈b1, σ〉 → false

〈b1 ∧ b2, σ〉 → false

〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → true 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → true

〈b1, σ〉 → true

〈b1 ∨ b2, σ〉 → true

〈b2, σ〉 → true

〈b1 ∨ b2, σ〉 → true

〈b1, σ〉 → false 〈b2, σ〉 → false

〈b1 ∨ b2, σ〉 → false

23 of 23 Semantics and Verification of Software
Summer Semester 2015
Lecture 2: Operational Semantics of WHILE I
(Evaluation of Expressions)

	Recap: Syntax of WHILE
	Operational Semantics of WHILE
	Evaluation of Arithmetic Expressions
	Excursus: Proof by Structural Induction
	Evaluation of Boolean Expressions

