
Semantics and Verification of Software
Summer Semester 2015

Lecture 19: Wrap-Up

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Recap: Correctness Properties for Execution Time

Semantics of Timed Correctness Properties

Definition (Semantics of timed correctness properties (extends Definition 11.1))

Let A,B ∈ Assn, c ∈ Cmd , and e ∈ AExp. Then {A} c {e⇓B} is called valid
(notation: |= {A} c {e⇓B}) if there exists k ∈ N such that for each I ∈ Int and each
σ |=I A, there exist σ′ ∈ Σ and τ ≤ k · AJeKσ such that 〈c, σ〉 τ−→ σ′ and σ′ |=I B

Note: e is evaluated in initial (rather than final) state

3 of 16 Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

Recap: Correctness Properties for Execution Time

Proving Timed Correctness

Definition (Hoare Logic for timed correctness (extends Definition 11.3))

The Hoare rules for timed correctness are given by (where i, u ∈ LVar)
(skip)

{A} skip {1⇓A}
(asgn)

{A[x 7→ a]} x := a {1⇓A}

(seq)

{A ∧ e′2 = u} c1 {e1⇓C ∧ e2 ≤ u} {C} c2 {e2⇓B}
{A} c1;c2 {e1 + e′2⇓B}

(if)

{A ∧ b} c1 {e⇓B} {A ∧ ¬b} c2 {e⇓B}
{A} if b then c1 else c2 end {e⇓B}

(while)

{i ≥ 0 ∧ A(i + 1) ∧ e′ = u} c {e0⇓A(i) ∧ e ≤ u}
{∃i.i ≥ 0 ∧ A(i)} while b do c end {e⇓A(0)}

where |= (i ≥ 0 ∧ A(i + 1))⇒ (b ∧ e ≥ e0 + e′) and |= A(0)⇒ (¬b ∧ e ≥ 1)

(cons)

|= (A⇒ (A′ ∧ ∃k ∈ N.e′ ≤ k · e)) {A′} c {e′⇓B′} |= (B′ ⇒ B)

{A} c {⇓e}B

4 of 16 Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

Soundness and Completeness

Soundness and Completeness

Theorem 19.1 (Soundness)

For every timed correctness property {A} c {e⇓B},
` {A} c {e⇓B} ⇒ |= {A} c {e⇓B}.

Proof.

on the board (by structural induction on derivation; only (while) rule)

Theorem 19.2 (Relative completeness)

The Hoare Logic for timed correctness properties is relatively complete, i.e., for every
{A} c {e⇓B}:

|= {A} c {e⇓B} ⇒ ` {A} c {e⇓B}.

Proof.

omitted

6 of 16 Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

Outlook: Semantics of Functional Programming Languages

Semantics of Functional Programming Languages I

• Program = list of function definitions
• Simplest setting: first-order function definitions of the form

f (x1, . . . , xn) = t
– function name f
– formal parameters x1, . . . , xn

– term t over (base and defined) function calls and x1, . . . , xn

• Operational semantics (only function calls; for terms ti , numbers zj and variables xk)
– call-by-value case:

t1 → z1 . . . tn → zn t[x1 7→ z1, . . . , xn 7→ zn]→ z

f (t1, . . . , tn)→ z

– call-by-name case:
t[x1 7→ t1, . . . , xn 7→ tn]→ z

f (t1, . . . , tn)→ z

8 of 16 Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

Outlook: Semantics of Functional Programming Languages

Semantics of Functional Programming Languages II

• Denotational semantics
– program = equation system (for functions)
– induces call-by-value and call-by-name functional
– monotonic and continuous w.r.t. graph inclusion
– semantics := least fixpoint (Tarski/Knaster Theorem)
– coincides with operational semantics

• Extensions: higher-order types, data types, ...
• see [Winskel 1996, Sct. 9] and Functional Programming course [Giesl]

9 of 16 Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

Outlook: Semantics of Logic Programming Languages

Syntax of Logic Programming Languages

• Program = list of predicate definitions
• Predicate definition = sequence of clauses of the form q0: −q1, . . . , qn with atoms p, qi

• Atom = predicate call p(t1, . . . , tk) with predicate p and terms ti over variables, constants
and function symbols

Example 19.3

father(tom, sally).
father(tom, erica).
father(mike, tom).
mother(anna, sally).
sibling(X, Y) :- parent(Z, X), parent(Z, Y).
parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

11 of 16 Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

Outlook: Semantics of Logic Programming Languages

Operational Semantics of Logic Programming Languages

• Defined by (SLD) resolution
• Starts with single goal, called query
• Try to find refutation proof of negated query

(⇒ instantiated query is logical consequence of program)
• Involves backtracking if several clause heads match

Example 19.4

father(tom, sally).

father(tom, erica).

father(mike, tom).

mother(anna, sally).

sibling(X, Y) :- parent(Z, X), parent(Z, Y).

parent(X, Y) :- mother(X, Y).

parent(X, Y) :- father(X, Y).

Refutation proof:
sibling(sally, erica).

⇐ parent(Z, sally), parent(Z, erica).

⇐ mother(Z, sally), parent(Z, erica).

⇐ parent(anna, erica).

⇐ mother(anna, erica).
⇐ father(anna, erica).
⇐ father(Z, sally), parent(Z, erica).

⇐ parent(tom, erica).

⇐ mother(tom, erica).
⇐ father(tom, erica).

⇐ �

12 of 16 Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

Outlook: Semantics of Logic Programming Languages

Denotational Semantics of Logic Programming Languages

• meaning of program = {fully instantiated valid atoms}
• fixpoint iteration:

– start with empty set
– 1st step: all instantiations of facts (i.e., clauses with empty RHS)
– i + 1st step: all instantiations of facts that can be derived from known facts

• monotonic and continuous w.r.t. set inclusion
• semantics := least fixpoint (Tarski/Knaster Theorem)
• coincides with operational semantics

Example 19.5

father(tom, sally).

father(tom, erica).

father(mike, tom).

mother(anna, sally).

sibling(X, Y) :- parent(Z, X), parent(Z, Y).

parent(X, Y) :- mother(X, Y).

parent(X, Y) :- father(X, Y).

Fixpoint iteration:
A0 = ∅
A1 = {f(t, s), f(t, e), f(m, t), m(a, s)}
A2 = A1 ∪ {p(t, s), p(t, e), p(m, t), p(a, s)}
A3 = A2 ∪ {s(s, e), s(e, s)}
A4 = A3

13 of 16 Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

Outlook: Semantics of Logic Programming Languages

Further Topics in Logic Programming Languages

• (Prolog) extensions: arithmetic, lists, cut, I/O, ...
• see Logic Programming course [Giesl]

14 of 16 Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

Miscellaneous

Miscellaneous
• Oral exams:

– Thu 23 July
– Wed 26 August
– Thu 24 September

Registration via foodle poll (cf. course web page)
• Master-level teaching in Winter 2015/16:

– Course Modelling and Verification of Probabilistic Systems [Katoen]
– Course Concurrency Theory [Katoen/Noll]
– Seminar Trends in Computer-Aided Verification [Katoen/Noll/NN]

16 of 16 Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

	Recap: Correctness Properties for Execution Time
	Soundness and Completeness
	Outlook: Semantics of Functional Programming Languages
	Outlook: Semantics of Logic Programming Languages
	Miscellaneous

