Semantics and Verification of Software

Summer Semester 2015
Lecture 19: Wrap-Up

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

’ Software Modeling

‘ Il and Verification Chair

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Recap: Correctness Properties for Execution Time

Semantics of Timed Correctness Properties

Definition (Semantics of timed correctness properties (extends Definition 11.1))

Let A, B € Assn, ¢ € Cmd, and e € AExp. Then {A} c {el} B} is called valid
(notation: = {A} c{ell B}) if there exists k € N such that for each / € Int and each

o = A there exist o’ € ¥ and 7 < k - [e]o such that (c,0c) — o’ and o’ =' B

Note: e is evaluated in initial (rather than final) state

RWTH

30of 16 Semantics and Verification of Software
Summer Semester 2015 Soft Modeli
. oftware Modeling
Lecture 19: Wrap-Up Bl and Verification Chair

Recap: Correctness Properties for Execution Time

Proving Timed Correctness

Definition (Hoare Logic for timed correctness (extends Definition 11.3))
The Hoare rules for timed correctness are given by (where i, u € LVar)
“{A} skip {1/ A} {Alx — a} x :=a{1| A}
{Ane,=u}lci{erdCNhe <u} {C}c{elB}
{A}ci;00{ey + €51 B}
{ANb}c {ellB} {AN-b}c{el B}
: {A} if b then c; else ¢, end {e| B}
{iZ0NA(i+1)N€E€ =u}c{eAli) N e < u}
{3i.i> 0N A(i)} while bdo c end {e | A(0)}
where = (i >0ANA(i+1))=(bAe>eg +€)and = A0)= (-bAe>1)

C (A= (ANIkEN.E <k-e)) {Alc{eB} (B = B)

{A}c{le}B

(asgn)

(seq)

(while)

(cons)

RWTH

Summer Semester 2015

4 0f 16 Semantics and Verification of Software o
Lecture 19: Wrap-Up Software Modeling

Il and Verification Chair

Soundness and Completeness

Soundness and Completeness

Theorem 19.1 (Soundness)
For every timed correctness property { A} ¢ {ell B},
~{AjclelB} = [{Ajc{elB}.

Proof.
on the board (by structural induction on derivation; only (while) rule) []

Theorem 19.2 (Relative completeness)

The Hoare Logic for timed correctness properties is relatively complete, i.e., for every
{A} c{el B}:
={Atc{elB} = F{Ajc{elB].

Proof.
omitted []

RWTH

6 of 16 Semantics and Verification of Software
Summer Semester 2015
Software Modeling

Lecture 19: Wrap-Up Bl and Verification Chair

Outlook: Semantics of Functional Programming Languages

Semantics of Functional Programming Languages |

e Program = list of function definitions
e Simplest setting: first-order function definitions of the form

f(x1,....,x%) =1t
— function name f

— formal parameters xq, . .., x,
— term t over (base and defined) function calls and x;, . . ., x,

e Operational semantics (only function calls; for terms f;, numbers z; and variables xx)
— call-by-value case:
bh— 2z .. b= zZy tq oz, x> 2] = 2
f(ty,...,t,) = z

— call-by-name case:
txy =t Xn > 1] = 2

f(ty,... 1) — z

8 of 16 Semantics and Verification of Software
Summer Semester 2015
Software Modeling

Lecture 19: Wrap-Up ‘ Bl and Verification Chair

‘RW“-I

Outlook: Semantics of Functional Programming Languages

Semantics of Functional Programming Languages Il

e Denotational semantics
— program = equation system (for functions)
— induces call-by-value and call-by-name functional
— monotonic and continuous w.r.t. graph inclusion
— semantics := least fixpoint (Tarski/Knaster Theorem)
— coincides with operational semantics

e Extensions: higher-order types, data types, ...
e see [Winskel 1996, Sct. 9] and Functional Programming course [Giesl]

90of 16 Semantics and Verification of Software
Summer Semester 2015
Software Modeling

Lecture 19: Wrap-Up ‘ Bl and Verification Chair

RWTH

Outlook: Semantics of Logic Programming Languages

Syntax of Logic Programming Languages

e Program = list of predicate definitions
e Predicate definition = sequence of clauses of the form qy: —q4, . . ., g, with atoms p, g;

e Atom = predicate call p(t;, . .., tx) with predicate p and terms t; over variables, constants
and function symbols

Example 19.3

father (tom, sally).

father(tom, erica).

father (mike, tom).

mother (anna, sally).

sibling(X, Y) :- parent(Z, X), parent(Z, Y).
parent (X, Y) :- mother(X, Y).

parent (X, Y) :- father(X, Y).

RWTH

11 of 16 Semantics and Verification of Software
Summer Semester 2015
Software Modeling

Lecture 19: Wrap-Up ‘ Bl and Verification Chair

Outlook: Semantics of Logic Programming Languages

Operational Semantics of Logic Programming Languages

e Defined by (SLD) resolution
e Starts with single goal, called query

e Try to find refutation proof of negated query

(= instantiated query is logical consequence of program)
e Involves backiracking if several clause heads match

Example 19.4

father (tom, sally).

father(tom, erica).

father (mike, tom).

mother (anna, sally).

sibling(X, Y) :- parent(Z, X), parent(Z, Y).
parent (X, Y) :- mother(X, Y).

parent(X, Y) :- father(X, Y).

Refutation proof:
sibling(sally, erica).
< parent(Z, sally), parent(Z, erica).
< mother(Z, sally), parent(Z, erica).
< parent(anna, erica).
< mother(anna, erica). ’
< father(anna, erica).
< father(Z, sally), parent(Z, erica).
< parent (tom, erica).

12 0of 16

Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

<~ mother(toh erica). T RWTH

<= father (tog | ewican,.
~— []

Outlook: Semantics of Logic Programming Languages

Denotational Semantics of Logic Programming Languages

e meaning of program = {fully instantiated valid atoms}

e fixpoint iteration:
— start with empty set

— 1st step: all instantiations of facts (i.e., clauses with empty RHS)
— | + 1st step: all instantiations of facts that can be derived from known facts

e monotonic and continuous w.r.t. set inclusion

e semantics := least fixpoint (Tarski/Knaster Theorem)

e coincides with operational semantics

Example 19.5

father(tom, sally).
father(tom, erica).
father(mike, tom).
mother (anna, sally).

sibling(X, Y) :- parent(Z, X),

parent (X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

parent(Z, Y).

Fixpoint iteration:

Ao :@

Ay ={f(t,s),f(t,e),f(m, t),m(a,s)}
Az = A1 U{p(t,s),p(t,e), p(m, t),p(a, s)}
A3 =AU {s(s,e),s(e,s)}

A, = Aq

13 of 16 Semantics and Verification of Software
Summer Semester 2015
Lecture 19: Wrap-Up

: Software Modeling

- and Verification Chair

Outlook: Semantics of Logic Programming Languages

Further Topics in Logic Programming Languages

e (Prolog) extensions: arithmetic, lists, cut, 1/O, ...
e see Logic Programming course [Giesl]

14 of 16 Semantics and Verification of Software
Summer Semester 2015
Software Modeling

Lecture 19: Wrap-Up ‘ Bl and Verification Chair

RWTH

Miscellaneous

Miscellaneous

e Oral exams:
— Thu 23 July
— Wed 26 August
— Thu 24 September

Registration via foodle poll (cf. course web page)

e Master-level teaching in Winter 2015/16:

— Course Modelling and Verification of Probabilistic Systems [Katoen]
— Course Concurrency Theory [Katoen/Noll]
— Seminar Trends in Computer-Aided Verification [Katoen/Noll/NN]

16 of 16 Semantics and Verification of Software
Summer Semester 2015
Software Modeling

Lecture 19: Wrap-Up ‘ Bl and Verification Chair

RWTH

	Recap: Correctness Properties for Execution Time
	Soundness and Completeness
	Outlook: Semantics of Functional Programming Languages
	Outlook: Semantics of Logic Programming Languages
	Miscellaneous

