

Semantics and Verification of Software

Summer Semester 2015

Lecture 19: Wrap-Up

Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Semantics of Timed Correctness Properties

Definition (Semantics of timed correctness properties (extends Definition 11.1))

Let $A, B \in Assn, c \in Cmd$, and $e \in AExp$. Then $\{A\} c \{e \Downarrow B\}$ is called valid (notation: $\models \{A\} c \{e \Downarrow B\}$) if there exists $k \in \mathbb{N}$ such that for each $I \in Int$ and each $\sigma \models^{I} A$, there exist $\sigma' \in \Sigma$ and $\tau \leq k \cdot \mathfrak{A}[e] \sigma$ such that $\langle c, \sigma \rangle \stackrel{\tau}{\longrightarrow} \sigma'$ and $\sigma' \models^{I} B$

Note: e is evaluated in initial (rather than final) state

Recap: Correctness Properties for Execution Time

Proving Timed Correctness

Definition (Hoare Logic for timed correctness (extends Definition 11.3)) The Hoare rules for timed correctness are given by (where $i, u \in LVar$) $(asgn) \overline{\{A[x \mapsto a]\} x := a\{1 \Downarrow A\}}$ A skip $\{1 \Downarrow A\}$ $\frac{\{A \land e_2' = u\} c_1 \{e_1 \Downarrow C \land e_2 \le u\} \{C\} c_2 \{e_2 \Downarrow B\}}{\{A\} c_1; c_2 \{e_1 + e_2' \Downarrow B\}}$ $\frac{\{A \land b\} c_1 \{e \Downarrow B\} \{A \land \neg b\} c_2 \{e \Downarrow B\}}{\{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \text{ end } \{e \Downarrow B\}}$ $\frac{\{i \ge 0 \land A(i+1) \land e' = u\} c \{e_0 \Downarrow A(i) \land e \le u\}}{\{\exists i.i \ge 0 \land A(i)\} \text{ while } b \text{ do } c \text{ end } \{e \Downarrow A(0)\}}$ where $\models (i \ge 0 \land A(i+1)) \Rightarrow (b \land e \ge e_0 + e')$ and $\models A(0) \Rightarrow (\neg b \land e \ge 1)$ $\models (\mathsf{A} \Rightarrow (\mathsf{A}' \land \exists \mathsf{k} \in \mathbb{N}. \mathsf{e}' \leq \mathsf{k} \cdot \mathsf{e})) \ \{\mathsf{A}'\} c \{\mathsf{e}' \Downarrow \mathsf{B}'\} \ \models (\mathsf{B}' \Rightarrow \mathsf{B})$ (cons) $\{A\} c \{ \Downarrow e \} B$

4 of 16 Semantics and Verification of Software Summer Semester 2015 Lecture 19: Wrap-Up

Soundness and Completeness

Theorem 19.1 (Soundness)

Lecture 19: Wrap-Up

For every timed correctness property $\{A\} c \{e \Downarrow B\}$, $\vdash \{A\} c \{e \Downarrow B\} \Rightarrow \models \{A\} c \{e \Downarrow B\}$.

Proof.

on the board (by structural induction on derivation; only (while) rule)

Theorem 19.2 (Relative completeness)

The Hoare Logic for timed correctness properties is relatively complete, i.e., for every $\{A\} c \{e \Downarrow B\}$: $\models \{A\} c \{e \Downarrow B\} \Rightarrow \vdash \{A\} c \{e \Downarrow B\}.$

6 of 16	Semantics and Verification of Software Summer Semester 2015	9	RWTHAACHEN
omitted			
Proof.			

Software Modeling

Outlook: Semantics of Functional Programming Languages

Semantics of Functional Programming Languages I

- Program = list of function definitions
- Simplest setting: first-order function definitions of the form

$$f(x_1,\ldots,x_n)=t$$

- function name f
- formal parameters x_1, \ldots, x_n
- term *t* over (base and defined) function calls and x_1, \ldots, x_n
- Operational semantics (only function calls; for terms t_i , numbers z_i and variables x_k)

- call-by-value case:

$$\frac{t_1 \to z_1 \quad \dots \quad t_n \to z_n \quad t[x_1 \mapsto z_1, \dots, x_n \mapsto z_n] \to z}{f(t_1, \dots, t_n) \to z}$$

- call-by-name case:

$$\frac{t[x_1 \mapsto t_1, \ldots, x_n \mapsto t_n] \to z}{f(t_1, \ldots, t_n) \to z}$$

Outlook: Semantics of Functional Programming Languages

Semantics of Functional Programming Languages II

- Denotational semantics
 - program = equation system (for functions)
 - induces call-by-value and call-by-name functional
 - monotonic and continuous w.r.t. graph inclusion
 - semantics := least fixpoint (Tarski/Knaster Theorem)
 - coincides with operational semantics
- Extensions: higher-order types, data types, ...
- see [Winskel 1996, Sct. 9] and *Functional Programming* course [Giesl]

Syntax of Logic Programming Languages

- Program = list of predicate definitions
- Predicate definition = sequence of clauses of the form $q_0: -q_1, \ldots, q_n$ with atoms p, q_i
- Atom = predicate call $p(t_1, ..., t_k)$ with predicate p and terms t_i over variables, constants and function symbols

Example 19.3

```
father(tom, sally).
father(tom, erica).
father(mike, tom).
mother(anna, sally).
sibling(X, Y) :- parent(Z, X), parent(Z, Y).
parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).
```

11 of 16 Semantics and Verification of Software Summer Semester 2015 Lecture 19: Wrap-Up

Operational Semantics of Logic Programming Languages

- Defined by (SLD) resolution
- Starts with single goal, called query
- Try to find refutation proof of negated query
 - $(\Rightarrow$ instantiated query is logical consequence of program)
- Involves backtracking if several clause heads match

Example 19.4

```
father(tom, sally).
father(tom, erica).
father(mike, tom).
mother(anna, sally).
sibling(X, Y) :- parent(Z, X), parent(Z, Y).
parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).
```

12 of 16 Semantics and Verification of Software Summer Semester 2015 Lecture 19: Wrap-Up

Denotational Semantics of Logic Programming Languages

- meaning of program = {fully instantiated valid atoms}
- fixpoint iteration:
 - start with empty set
 - 1st step: all instantiations of facts (i.e., clauses with empty RHS)
 - -i + 1st step: all instantiations of facts that can be derived from known facts
- monotonic and continuous w.r.t. set inclusion
- semantics := least fixpoint (Tarski/Knaster Theorem)
- coincides with operational semantics

Example 19.5

```
father(tom, sally).
father(tom, erica).
father(mike, tom).
mother(anna, sally).
sibling(X, Y) :- parent(Z, X), parent(Z, Y).
parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).
```

Fixpoint iteration:

$$A_0 = \emptyset$$

 $A_1 = \{f(t, s), f(t, e), f(m, t), m(a, s)\}$
 $A_2 = A_1 \cup \{p(t, s), p(t, e), p(m, t), p(a, s)\}$
 $A_3 = A_2 \cup \{s(s, e), s(e, s)\}$
 $A_4 = A_3$

Further Topics in Logic Programming Languages

- (Prolog) extensions: arithmetic, lists, cut, I/O, ...
- see Logic Programming course [Giesl]

Miscellaneous

- Oral exams:
 - Thu 23 July
 - Wed 26 August
 - Thu 24 September

Registration via foodle poll (cf. course web page)

- Master-level teaching in Winter 2015/16:
 - Course Modelling and Verification of Probabilistic Systems [Katoen]
 - Course Concurrency Theory [Katoen/Noll]
 - Seminar Trends in Computer-Aided Verification [Katoen/Noll/NN]

