

Semantics and Verification of Software

Summer Semester 2015

Lecture 18: Axiomatic Semantics of WHILE VI (Proving Timed Correctness)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Online Registration for Seminars and Practical Courses (Praktika) in Winter Term 2015/16

Who?

Students of: • Master Courses

Bachelor Informatik (ProSeminar!)

Where?

www.graphics.rwth-aachen.de/apse

When?

25.06.2015 - 08.07.2015

Schedule

- Lectures:
 - Tue 30 June, Tue 7 July
 - *not* Thu 2 July, Thu 9 July
- Exams:
 - Thu 23 July
 - Wed 26 August
 - Thu 24 September

Timed Evaluation of Arithmetic Expressions

Definition (Timed Evaluation of arithmetic expressions (extends Definition 2.2))

Expression *a* evaluates to $z \in \mathbb{Z}$ in state σ in $\tau \in \mathbb{N}$ steps (notation: $\langle a, \sigma \rangle \xrightarrow{\tau} z$) if this relationship is derivable by means of the following rules:

Axioms:
$$\frac{}{\langle z,\sigma\rangle \xrightarrow{1} z} \frac{}{\langle x,\sigma\rangle \xrightarrow{1} \sigma(x)}$$
Rules:
$$\frac{\langle a_{1},\sigma\rangle \xrightarrow{\tau_{1}} z_{1} \langle a_{2},\sigma\rangle \xrightarrow{\tau_{2}} z_{2}}{\langle a_{1}+a_{2},\sigma\rangle \xrightarrow{\tau_{1}+\tau_{2}+1} z} \text{ where } z := z_{1}+z_{2}$$

$$\frac{\langle a_{1},\sigma\rangle \xrightarrow{\tau_{1}} z_{1} \langle a_{2},\sigma\rangle \xrightarrow{\tau_{2}} z_{2}}{\langle a_{1}-a_{2},\sigma\rangle \xrightarrow{\tau_{1}+\tau_{2}+1} z} \text{ where } z := z_{1}-z_{2}$$

$$\frac{\langle a_{1},\sigma\rangle \xrightarrow{\tau_{1}} z_{1} \langle a_{2},\sigma\rangle \xrightarrow{\tau_{2}} z_{2}}{\langle a_{1},\sigma\rangle \xrightarrow{\tau_{1}} z_{1} \langle a_{2},\sigma\rangle \xrightarrow{\tau_{2}} z_{2}} \text{ where } z := z_{1}\cdot z_{2}$$

$$\frac{\langle a_{1},\sigma\rangle \xrightarrow{\tau_{1}} z_{1} \langle a_{2},\sigma\rangle \xrightarrow{\tau_{2}} z_{2}}{\langle a_{1}*a_{2},\sigma\rangle \xrightarrow{\tau_{1}+\tau_{2}+1} z} \text{ where } z := z_{1}\cdot z_{2}$$

Timed Evaluation of Boolean Expressions

Definition (Timed Evaluation of Boolean expressions (extends Definition 2.7))

For $b \in BExp$, $\sigma \in \Sigma$, $\tau \in \mathbb{N}$, and $t \in \mathbb{B}$, the timed evaluation relation $\langle b, \sigma \rangle \stackrel{\tau}{\longrightarrow} t$ is defined by:

Timed Execution of Statements

Definition (Timed execution relation for statements (extends Definition 3.2))

For $c \in Cmd$, $\sigma, \sigma' \in \Sigma$, and $\tau \in \mathbb{N}$, the timed execution relation $\langle c, \sigma \rangle \xrightarrow{\tau} \sigma'$ is defined by:

$$\begin{array}{c} \langle a,\sigma\rangle \stackrel{-}{\longrightarrow} z \\ \hline \langle \text{skip},\sigma\rangle \stackrel{1}{\longrightarrow} \sigma \\ \hline \langle c_1,\sigma\rangle \stackrel{\tau_1}{\longrightarrow} \sigma' \ \langle c_2,\sigma'\rangle \stackrel{\tau_2}{\longrightarrow} \sigma'' \\ \hline \langle c_1;c_2,\sigma\rangle \stackrel{\tau_1+\tau_2}{\longrightarrow} \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma\rangle \stackrel{\tau}{\longrightarrow} \text{true } \langle c,\sigma\rangle \stackrel{\tau}{\longrightarrow} \sigma' \\ \hline \langle b,\sigma\rangle \stackrel{\tau}{\longrightarrow} \text{ false} \\ \hline \langle b,\sigma\rangle \stackrel{\tau}{\longrightarrow} \text{ false } \\ \hline \langle b,\sigma\rangle \stackrel{\tau}{\longrightarrow} \text{ true } \langle c,\sigma\rangle \stackrel{\tau}{\longrightarrow} \sigma' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma\rangle \stackrel{\tau+\tau_1+\tau_2}{\longrightarrow} \sigma' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma\rangle \stackrel{\tau}{\longrightarrow} \text{ true } \langle c,\sigma\rangle \stackrel{\tau}{\longrightarrow} \sigma' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma\rangle \stackrel{\tau}{\longrightarrow} \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma\rangle \stackrel{\tau}{\longrightarrow} \sigma'' \\ \hline \langle \text{while } b \text{ do } c \text{ end},\sigma\rangle \stackrel{\tau+\tau_1+\tau_2+2}{\longrightarrow} \sigma'' \\ \hline \end{array}$$

Timed Correctness Properties

Now: timed correctness properties of the form

$$\{A\} c \{e \Downarrow B\}$$

where $c \in Cmd$, $A, B \in Assn$, and $e \in AExp$

Validity of property $\{A\}$ c $\{e \Downarrow B\}$

For all states $\sigma \in \Sigma$ which satisfy A: the execution of c in σ terminates in a state satisfying B, and the required execution time is in $\mathcal{O}(e)$

Example

- 1. $\{x = 3\}$ y:=1; while $\neg(x=1)$ do y:=y*x; x:=x-1 end $\{1 \Downarrow true\}$ expresses that for constant input 3, the execution time of the factorial program is bounded by a constant
- 2. $\{x > 0\}$ y:=1; while $\neg(x=1)$ do y:=y*x; x:=x-1 end $\{x \downarrow true\}$ expresses that for positive inputs, the execution time of the factorial program is linear in that value

Semantics of Timed Correctness Properties

Definition (Semantics of timed correctness properties (extends Definition 11.1))

Let $A, B \in Assn$, $c \in Cmd$, and $e \in AExp$. Then $\{A\}$ c $\{e \Downarrow B\}$ is called valid (notation: $\models \{A\}$ c $\{e \Downarrow B\}$) if there exists $k \in \mathbb{N}$ such that for each $l \in Int$ and each $\sigma \models^l A$, there exist $\sigma' \in \Sigma$ and $\tau \leq k \cdot \mathfrak{A}[\![e]\!] \sigma$ such that $\langle c, \sigma \rangle \stackrel{\tau}{\longrightarrow} \sigma'$ and $\sigma' \models^l B$

Note: e is evaluated in initial (rather than final) state

Proving Timed Correctness I

Definition (Hoare Logic for timed correctness (extends Definition 11.3))

The Hoare rules for timed correctness are given by (where $i, u \in LVar$)

$$\begin{array}{l} \text{\tiny (skip)} \overline{\{A\} \text{ skip} \{1 \!\downarrow\!\! A\}} & \text{\tiny (asgn)} \overline{\{A[x \mapsto a]\} \, x := a \, \{1 \!\downarrow\!\! A\}} \\ & \underbrace{\{A \land e_2' = u\} \, c_1 \, \{e_1 \!\downarrow\!\! C \land e_2 \leq u\} \, \, \{C\} \, c_2 \, \{e_2 \!\downarrow\!\! B\}}_{\{A\} \, c_1 \, ; \, c_2 \, \{e_1 + e_2' \!\downarrow\!\! B\}} \\ & \underbrace{\{A \land b\} \, c_1 \, \{e \!\downarrow\!\! B\} \, \, \{A \land \neg b\} \, c_2 \, \{e \!\downarrow\!\! B\}}_{\text{\tiny (I)}} \\ & \underbrace{\{A \land b\} \, c_1 \, \{e \!\downarrow\!\! B\} \, \, \{A \land \neg b\} \, c_2 \, \{e \!\downarrow\!\! B\}}_{\{A\} \, \text{if} \, b \, \text{then} \, c_1 \, \text{else} \, c_2 \, \text{end} \, \{e \!\downarrow\!\! B\}} \\ & \underbrace{\{i \geq 0 \land A(i+1) \land e' = u\} \, c \, \{e_0 \!\downarrow\!\! A(i) \land e \leq u\}}_{\{\forall hille)} \\ & \underbrace{\{i \geq 0 \land A(i+1) \land e' = u\} \, c \, \{e_0 \!\downarrow\!\! A(i) \land e \leq u\}}_{\{\exists i.i \geq 0 \land A(i)\} \, \text{while} \, b \, \text{do} \, c \, \text{end} \, \{e \!\downarrow\!\!\! A(0)\}}_{\{\forall hille)} \\ & \text{where} \, \models (i \geq 0 \land A(i+1)) \Rightarrow (b \land e \geq e_0 + e') \, \text{and} \, \models A(0) \Rightarrow (\neg b \land e \geq 1) \\ & \stackrel{\models}{\models} (A \Rightarrow (A' \land \exists k \in \mathbb{N}.e' \leq k \cdot e)) \, \, \{A'\} \, c \, \{e' \!\downarrow\!\! B'\} \, \models (B' \Rightarrow B)}_{\{cons)} \\ & \underbrace{\{A\} \, c \, \{\!\!\!\! \downarrow\!\! e\} \, B}_{\{cons)} \\ \end{array}$$

Proving Timed Correctness

Examples of Proving Timed Correctness

Example 18.1

1. Prove that

$$\vdash \{\texttt{x} > 0\} \, \texttt{y} \colon = \texttt{1}; \; \; \texttt{while} \; \; \neg(\texttt{x} = \texttt{1}) \; \; \texttt{do} \; \; \texttt{y} \colon = \texttt{y} \star \texttt{x} \, ; \; \; \texttt{x} \colon = \texttt{x} - \texttt{1} \; \; \texttt{end} \, \{\texttt{x} \, \Downarrow \, \texttt{true}\}$$

(on the board)

2. Determine expression e_{fac} such that

$$\vdash \{x > 0\} y := 1;$$
 while $\neg (x=1)$ do $y := y * x;$ $x := x-1$ end $\{e_{fac} \Downarrow true\}$

(on the board)

