

Semantics and Verification of Software

Summer Semester 2015

Lecture 17: Axiomatic Semantics of WHILE V (Correctness Properties for Execution Time)

Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Online Registration for Seminars and Practical Courses (Praktika) in Winter Term 2015/16

Who?

- Students of: Master Courses
 - Bachelor Informatik (ProSeminar!)

Where?

www.graphics.rwth-aachen.de/apse

When?

25.06.2015 - 08.07.2015

50 MMER FEST 26. Juni Informatikzentrum

 \bigcirc

 $\textcircled{\bullet}$

 \bigcirc

Karriere 13 ³⁰ Firmenkontaktmesse Science Tunnel Ort: Foyer und Korridor Hauptbau

 \bigcirc

 \bigcirc

 \odot

Kluge Köpfe 15 ³⁰ Festveranstaltung Absolventenfeier Ort: Aula 2 Hauptbau

Coole Party 19³⁰ Eröffnung des Buffets 20³⁰-02⁰⁰ Party mit Live-Band und DJ Ort: Foyer E2 und Parkplatz

Workshops ProSiebenSat.1 IT-Sicherheit Accenture

Consulting: Networks Analytics (Anmeldung unter www.bonding.de/CyberDay)

8 Fachvorträge

Podiumsdiskussion

"Digitalisierung der Industrie Chancen und Risiken"

bonding CyberDay 2015

KOSTENLOS von Studenten

- Studenten

SuperC - Mittwoch 8. Juli 2015 Digitalisierung der Industrie von eCommerce bis zur Hybrid Cloud

www.bonding.de/CyberDay

Outline of Lecture 17

Recap: Communicating Sequential Processes

Fairness in CSP

Correctness Properties for Execution Time

Operational Semantics with Exact Execution Times

Timed Correctness Properties

Syntax of CSP

Definition (Syntax of CSP)

The syntax of CSP is given by $a ::= z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp$ $b ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \land b_2 \mid b_1 \lor b_2 \in BExp$ $c ::= skip \mid x := a \mid \alpha?x \mid \alpha!a \mid$ $c_1; c_2 \mid if gc fi \mid do gc od \mid c_1 \mid |c_2 \in Cmd$ $gc ::= b \rightarrow c \mid b \land \alpha?x \rightarrow c \mid b \land \alpha!a \rightarrow c \mid gc_1 \square gc_2 \in GCmd$

- In $c_1 \parallel c_2$, commands c_1 and c_2 must not use common variables (only local store)
- Guarded command $gc_1 \square gc_2$ represents an alternative
- In $b \rightarrow c$, b acts as a guard that enables the execution of c only if evaluated to true
- $b \wedge \alpha? x \rightarrow c$ and $b \wedge \alpha! a \rightarrow c$ additionally require the respective I/O operation to be enabled
- If none of its alternatives is enabled, a guarded command gc fails (configuration fail)
- if nondeterministically picks an enabled alternative
- A do loop is iterated until its body fails

Semantics of CSP I

Definition (Semantics of CSP – Commands (*Cmd*))

 $\langle \text{skip}, \sigma \rangle \rightarrow \langle \downarrow, \sigma \rangle$ $\langle \alpha ? \mathbf{x}, \sigma \rangle \xrightarrow{\alpha ? \mathbf{z}} \langle \downarrow, \sigma [\mathbf{x} \mapsto \mathbf{z}] \rangle$ $\langle \boldsymbol{c}_1, \sigma \rangle \xrightarrow{\lambda} \langle \boldsymbol{c}'_1, \sigma' \rangle$ $\langle \mathbf{C}_1; \mathbf{C}_2, \sigma \rangle \xrightarrow{\lambda} \langle \mathbf{C}'_1; \mathbf{C}_2, \sigma' \rangle$ $\langle gc, \sigma \rangle \xrightarrow{\lambda} \langle c, \sigma' \rangle$ $\langle \operatorname{do} \boldsymbol{gc} \operatorname{od}, \sigma \rangle \xrightarrow{\lambda} \langle \boldsymbol{c}; \operatorname{do} \boldsymbol{gc} \operatorname{od}, \sigma' \rangle$ $\langle \mathbf{C}_1, \sigma \rangle \xrightarrow{\lambda} \langle \mathbf{C}'_1, \sigma' \rangle$ $\langle \mathbf{c_1} \parallel \mathbf{c_2}, \sigma \rangle \xrightarrow{\lambda} \langle \mathbf{c'_1} \parallel \mathbf{c_2}, \sigma' \rangle$ $\langle \mathbf{c}_1, \sigma \rangle \xrightarrow{\alpha' \mathbf{Z}} \langle \mathbf{c}_1', \sigma' \rangle \langle \mathbf{c}_2, \sigma \rangle \xrightarrow{\alpha' \mathbf{Z}} \langle \mathbf{c}_2', \sigma \rangle \quad \langle \mathbf{c}_1, \sigma \rangle \xrightarrow{\alpha' \mathbf{Z}} \langle \mathbf{c}_1', \sigma \rangle \langle \mathbf{c}_2, \sigma \rangle \xrightarrow{\alpha' \mathbf{Z}} \langle \mathbf{c}_2', \sigma' \rangle$ $\langle \mathbf{C}_1 \parallel \mathbf{C}_2, \sigma \rangle \rightarrow \langle \mathbf{C}'_1 \parallel \mathbf{C}'_2, \sigma' \rangle$

 $\langle a, \sigma \rangle \rightarrow z$ $\langle \mathbf{x} := \mathbf{a}, \sigma \rangle \to \langle \downarrow, \sigma[\mathbf{x} \mapsto \mathbf{z}] \rangle$ $\langle \boldsymbol{a}, \sigma \rangle \rightarrow \boldsymbol{z}$ $\langle \alpha | \boldsymbol{a}, \sigma \rangle \xrightarrow{\alpha | \boldsymbol{z}} \langle \downarrow, \sigma \rangle$ $\langle gc, \sigma \rangle \xrightarrow{\lambda} \langle c, \sigma' \rangle$ $\langle \texttt{if } gc \texttt{fi}, \sigma \rangle \xrightarrow{\lambda} \langle c, \sigma' \rangle$ $\langle gc, \sigma \rangle \rightarrow fail$ $\langle \operatorname{do} \boldsymbol{gc} \operatorname{od}, \sigma \rangle \rightarrow \langle \downarrow, \sigma \rangle$ $\langle \mathbf{C}_2, \sigma \rangle \xrightarrow{\lambda} \langle \mathbf{C}_2', \sigma' \rangle$ $\langle \mathbf{c}_1 \parallel \mathbf{c}_2, \sigma \rangle \xrightarrow{\lambda} \langle \mathbf{c}_1 \parallel \mathbf{c}_2', \sigma' \rangle$ $\langle \mathbf{c}_1 \parallel \mathbf{c}_2, \sigma \rangle \rightarrow \langle \mathbf{c}'_1 \parallel \mathbf{c}'_2, \sigma' \rangle$

Semantics and Verification of Software Summer Semester 2015 Lecture 17: Axiomatic Semantics of WHILE V (Correctness Properties for Execution Time)

7 of 28

Semantics of CSP II

Definition (Semantics of CSP – Guarded commands (GCmd))

8 of 28 Semantics and Verification of Software Summer Semester 2015 Lecture 17: Axiomatic Semantics of WHILE V (Correctness Properties for Execution Time)

CSP Examples

Example

(on the board)

1. do (true $\land \alpha$? $x \rightarrow \beta$!x) od

describes a process that repeatedly receives a value along α and forwards it along β (i.e., a one-place buffer)

2. do true $\land \alpha$? $x \rightarrow \beta$!x od \parallel do true $\land \beta$? $y \rightarrow \gamma$!y od

specifies a two-place buffer that receives along α and sends along γ (using β for internal communication)

- 3. Nondeterministic choice between input channels:
 - i. if (true $\land \alpha$? $x \to c_1 \Box$ true $\land \beta$? $y \to c_2$) fi
 - ii. if (true \rightarrow (α ?x; c_1) \Box true \rightarrow (β ?y; c_2)) fi

Expected: progress whenever environment provides data on α or β

i. correct

ii. incorrect (can deadlock)

Outline of Lecture 17

Recap: Communicating Sequential Processes

Fairness in CSP

Correctness Properties for Execution Time

Operational Semantics with Exact Execution Times

Timed Correctness Properties

Fairness I

- Informally: unfair behaviour excludes processes from being executed
- Here: consider parallel composition of $n \ge 1$ sequential programs with executions of the form $\kappa_0 \to \kappa_1 \to \kappa_2 \to \ldots$ where $\kappa_j = \langle c_1^{(j)} \parallel \ldots \parallel c_n^{(j)}, \sigma_j \rangle$ and, for some $1 \le i \le n$ and $k_0 \in \mathbb{N}, c_i^{(k)} = c_i^{(k_0)}$ for all $k \ge k_0$
- But: only unfair if c_i not enabled

Fairness I

- Informally: unfair behaviour excludes processes from being executed
- Here: consider parallel composition of $n \ge 1$ sequential programs with executions of the form $\kappa_0 \to \kappa_1 \to \kappa_2 \to \ldots$ where $\kappa_j = \langle c_1^{(j)} \parallel \ldots \parallel c_n^{(j)}, \sigma_j \rangle$ and, for some $1 \le i \le n$ and $k_0 \in \mathbb{N}, c_i^{(k)} = c_i^{(k_0)}$ for all $k \ge k_0$
- But: only unfair if c_i not enabled

Definition (Enabledness)

 c_i is enabled in configuration $\kappa = \langle c_1 \parallel \ldots \parallel c_n, \sigma \rangle$ if there exists $\kappa' = \langle c'_1 \parallel \ldots \parallel c'_n, \sigma' \rangle$ with $\kappa \to \kappa'$ and $c'_i \neq c_i$.

Fairness I

- Informally: unfair behaviour excludes processes from being executed
- Here: consider parallel composition of $n \ge 1$ sequential programs with executions of the form $\kappa_0 \to \kappa_1 \to \kappa_2 \to \ldots$ where $\kappa_j = \langle c_1^{(j)} \parallel \ldots \parallel c_n^{(j)}, \sigma_j \rangle$ and, for some $1 \le i \le n$ and $k_0 \in \mathbb{N}, c_i^{(k)} = c_i^{(k_0)}$ for all $k \ge k_0$
- But: only unfair if c_i not enabled

Definition (Enabledness)

$$c_i$$
 is enabled in configuration $\kappa = \langle c_1 \parallel \ldots \parallel c_n, \sigma \rangle$ if there exists $\kappa' = \langle c'_1 \parallel \ldots \parallel c'_n, \sigma' \rangle$ with $\kappa \to \kappa'$ and $c'_i \neq c_i$.

1.
$$x := 0$$
 enabled in $\langle x := 0 \parallel y := 1, \sigma \rangle$ (actually always enabled)

- 2. α ?*x* enabled in $\langle \alpha$?*x* || α !0, $\sigma \rangle$
- 3. α ?*x* not enabled in $\langle \alpha$?*x* || β !1, $\sigma \rangle$

Fairness II

Definition (Fairness)

An execution $\kappa_0 \to \kappa_1 \to \kappa_2 \to \ldots$ where $\kappa_j = \langle c_1^{(j)} \parallel \ldots \parallel c_n^{(j)}, \sigma_j \rangle$ and, for some $1 \le i \le n$ and $k_0 \in \mathbb{N}$, $c_i^{(k)} = c_i^{(k_0)}$ for all $k \ge k_0$ is called 1. strongly unfair if $c_i^{(k)}$ is enabled in κ_k for all $k \ge k_0$

2. weakly unfair if $c_i^{(k)}$ is enabled in κ_k for infinitely many $k \ge k_0$

Fairness in CSP

Fairness III

1.
$$\langle \text{do true} \rightarrow x := x + 1 \text{ od } || y := y + 1, ... \rangle$$

 $\rightarrow \langle x := x + 1; \text{ do true} \rightarrow x := x + 1 \text{ od } || y := y + 1, ... \rangle$
 $\rightarrow \langle \text{do true} \rightarrow x := x + 1 \text{ od } || y := y + 1, ... \rangle \rightarrow ...$
is strongly unfair since $y := y + 1$ is always enabled

Fairness in CSP

Fairness III

Fairness III

Outline of Lecture 17

Recap: Communicating Sequential Processes

Fairness in CSP

Correctness Properties for Execution Time

Operational Semantics with Exact Execution Times

Timed Correctness Properties

- Definition 11.3: proof system for total correctness
- Can be used to show that program terminates bus does not give any information about required resources

- Definition 11.3: proof system for total correctness
- Can be used to show that program terminates bus does not give any information about required resources
- Goal: extend proof system to give (order of magnitude of) execution time of a statement
- Details in H.R. Nielson, F. Nielson: *Semantics with Applications: An Appetizer*, Springer, Section 10.2

- Definition 11.3: proof system for total correctness
- Can be used to show that program terminates bus does not give any information about required resources
- Goal: extend proof system to give (order of magnitude of) execution time of a statement
- Details in H.R. Nielson, F. Nielson: *Semantics with Applications: An Appetizer*, Springer, Section 10.2
- Informal guidelines (idea: each instruction of abstract machine takes one time unit):
 - skip: execution time $\mathcal{O}(1)$ (that is, bounded by a constant)
 - assignment: execution time $\mathcal{O}(1)$ (with maximal size of RHS as constant)
 - composition: sum of execution times of constituent statements
 - conditional: maximal execution time of branches
 - iteration: sum over all iterations of execution times of loop body

- Definition 11.3: proof system for total correctness
- Can be used to show that program terminates bus does not give any information about required resources
- Goal: extend proof system to give (order of magnitude of) execution time of a statement
- Details in H.R. Nielson, F. Nielson: *Semantics with Applications: An Appetizer*, Springer, Section 10.2
- Informal guidelines (idea: each instruction of abstract machine takes one time unit):
 - skip: execution time $\mathcal{O}(1)$ (that is, bounded by a constant)
 - assignment: execution time $\mathcal{O}(1)$ (with maximal size of RHS as constant)
 - composition: sum of execution times of constituent statements
 - conditional: maximal execution time of branches
 - iteration: sum over all iterations of execution times of loop body
- Procedure:
 - 1. Extend evaluation relation for expressions to give exact evaluation times
 - 2. Extend execution relation for statements to give exact execution times
 - 3. Extend total correctness proof system to give order of magnitude of execution time of statements

Outline of Lecture 17

Recap: Communicating Sequential Processes

Fairness in CSP

Correctness Properties for Execution Time

Operational Semantics with Exact Execution Times

Timed Correctness Properties

Operational Semantics with Exact Execution Times

Recap: Translation of Arithmetic Expressions

Definition (Translation of arithmetic expressions (Definition 5.1))

The translation function

$$\mathfrak{T}_a\llbracket.
rbracket:$$
 AExp o Code

is given by

$$\begin{split} \mathfrak{T}_{a}\llbracket z \rrbracket &:= \text{PUSH}(z) \\ \mathfrak{T}_{a}\llbracket x \rrbracket &:= \text{LOAD}(x) \\ \mathfrak{T}_{a}\llbracket a_{1} + a_{2} \rrbracket &:= \mathfrak{T}_{a}\llbracket a_{1} \rrbracket; \mathfrak{T}_{a}\llbracket a_{2} \rrbracket; \text{ADD} \\ \mathfrak{T}_{a}\llbracket a_{1} - a_{2} \rrbracket &:= \mathfrak{T}_{a}\llbracket a_{1} \rrbracket; \mathfrak{T}_{a}\llbracket a_{2} \rrbracket; \text{SUB} \\ \mathfrak{T}_{a}\llbracket a_{1} * a_{2} \rrbracket &:= \mathfrak{T}_{a}\llbracket a_{1} \rrbracket; \mathfrak{T}_{a}\llbracket a_{2} \rrbracket; \text{MULT} \end{split}$$

Timed Evaluation of Arithmetic Expressions

Definition 17.1 (Timed Evaluation of arithmetic expressions (extends Definition 2.2))

Expression *a* evaluates to $z \in \mathbb{Z}$ in state σ in $\tau \in \mathbb{N}$ steps (notation: $\langle a, \sigma \rangle \xrightarrow{\tau} z$) if this relationship is derivable by means of the following rules:

Axioms: $\frac{\overline{\langle z, \sigma \rangle} \xrightarrow{1} z}{\langle a_{1}, \sigma \rangle \xrightarrow{\tau_{1}} z_{1}} \overline{\langle a_{2}, \sigma \rangle} \xrightarrow{\frac{1}{\tau_{2}} z_{2}} \sigma(x)}$ Rules: $\frac{\overline{\langle a_{1}, \sigma \rangle} \xrightarrow{\tau_{1}} z_{1}}{\langle a_{1} + a_{2}, \sigma \rangle} \xrightarrow{\tau_{1} + \tau_{2} + 1} z} \text{ where } z := z_{1} + z_{2}$ $\frac{\overline{\langle a_{1}, \sigma \rangle} \xrightarrow{\tau_{1}} z_{1}} \langle a_{2}, \sigma \rangle \xrightarrow{\tau_{2}} z_{2}}{\langle a_{1} - a_{2}, \sigma \rangle} \text{ where } z := z_{1} - z_{2}$ $\frac{\overline{\langle a_{1}, \sigma \rangle} \xrightarrow{\tau_{1}} z_{1}} \langle a_{2}, \sigma \rangle \xrightarrow{\tau_{2}} z_{2}}{\langle a_{1} + a_{2}, \sigma \rangle} \text{ where } z := z_{1} - z_{2}$ $\frac{\overline{\langle a_{1}, \sigma \rangle} \xrightarrow{\tau_{1}} z_{1}} \langle a_{2}, \sigma \rangle \xrightarrow{\tau_{2}} z_{2}}{\langle a_{1} + a_{2}, \sigma \rangle} \text{ where } z := z_{1} \cdot z_{2}$

18 of 28 Semantics and Verification of Software Summer Semester 2015 Lecture 17: Axiomatic Semantics of WHILE V (Correctness Properties for Execution Time)

Operational Semantics with Exact Execution Times

Recap: Translation of Boolean Expressions

Definition (Translation of Boolean expressions (Definition 5.3))

The translation function

$$\mathfrak{T}_b\llbracket.
rbracket : \textit{BExp}
ightarrow \textit{Code}$$

is given by

$$\begin{split} \mathfrak{T}_b[\![\mathsf{true}]\!] &:= \mathsf{PUSH}(\mathsf{true}) \\ \mathfrak{T}_b[\![\mathsf{false}]\!] &:= \mathsf{PUSH}(\mathsf{false}) \\ \mathfrak{T}_b[\![\mathsf{a}_1\!=\!\mathsf{a}_2]\!] &:= \mathfrak{T}_a[\![\mathsf{a}_1]\!] \,; \mathfrak{T}_a[\![\mathsf{a}_2]\!] \,; \mathsf{EQ} \\ \mathfrak{T}_b[\![\mathsf{a}_1\!\!>\!\mathsf{a}_2]\!] &:= \mathfrak{T}_a[\![\mathsf{a}_1]\!] \,; \mathfrak{T}_a[\![\mathsf{a}_2]\!] \,; \mathsf{GT} \\ \mathfrak{T}_b[\![\neg b]\!] &:= \mathfrak{T}_b[\![b]\!] \,; \mathsf{NOT} \\ \mathfrak{T}_b[\![\neg b]\!] &:= \mathfrak{T}_b[\![b]\!] \,; \mathsf{NOT} \\ \mathfrak{T}_b[\![\mathsf{b}_1 \land \mathsf{b}_2]\!] &:= \mathfrak{T}_b[\![\mathsf{b}_1]\!] \,; \mathfrak{T}_b[\![\mathsf{b}_2]\!] \,; \mathsf{AND} \\ \mathfrak{T}_b[\![\mathsf{b}_1 \lor \mathsf{b}_2]\!] &:= \mathfrak{T}_b[\![\mathsf{b}_1]\!] \,; \mathfrak{T}_b[\![\mathsf{b}_2]\!] \,; \mathsf{OR} \end{split}$$

Operational Semantics with Exact Execution Times

Timed Evaluation of Boolean Expressions

Definition 17.2 (Timed Evaluation of Boolean expressions (extends Definition 2.7)) For $b \in BExp$, $\sigma \in \Sigma$, $\tau \in \mathbb{N}$, and $t \in \mathbb{B}$, the timed evaluation relation $\langle b, \sigma \rangle \xrightarrow{\tau} t$ is defined by:

$$\begin{array}{c} \langle t,\sigma\rangle \xrightarrow{1} t \\ \hline (t,\sigma) \xrightarrow{\tau_{1}} z \langle a_{2},\sigma\rangle \xrightarrow{\tau_{2}} z \\ \hline (a_{1}=a_{2},\sigma) \xrightarrow{\tau_{1}+\tau_{2}+1} \text{true} \\ \hline (a_{1},\sigma) \xrightarrow{\tau_{1}} z_{1} \langle a_{2},\sigma\rangle \xrightarrow{\tau_{2}} z_{2} \\ \hline (a_{1}>a_{2},\sigma) \xrightarrow{\tau_{1}+\tau_{2}+1} \text{true} \\ \hline (b,\sigma) \xrightarrow{\tau} \text{false} \\ \hline (\neg b,\sigma) \xrightarrow{\tau} \text{false} \\ \hline (\neg b,\sigma) \xrightarrow{\tau_{1}+\tau_{2}+1} \text{true} \\ \hline (b_{1},\sigma) \xrightarrow{\tau_{1}} \text{true} \langle b_{2},\sigma\rangle \xrightarrow{\tau_{2}} \text{true} \\ \hline (b_{1},\sigma) \xrightarrow{\tau_{1}} \text{false} \langle b_{2},\sigma\rangle \xrightarrow{\tau_{2}} \text{true} \\ \hline (b_{1},\sigma) \xrightarrow{\tau_{1}} \text{false} \langle b_{2},\sigma\rangle \xrightarrow{\tau_{2}} \text{true} \\ \hline (b_{1},\sigma) \xrightarrow{\tau_{1}} \text{false} \langle b_{2},\sigma\rangle \xrightarrow{\tau_{1}+\tau_{2}+1} \text{false} \\ \hline (\forall \text{ analogously}) \end{array}$$

20 of 28 Semantics and Verification of Software Summer Semester 2015 Lecture 17: Axiomatic Semantics of WHILE V (Correctness Properties for Execution Time)

Recap: Translation of Statements

Definition (Translation of statements (Definition 5.4))

The translation function $\mathfrak{T}_{c}[\![.]\!]: Cmd \rightarrow Code$ is given by

$$\begin{split} \mathfrak{T}_{c}\llbracket\operatorname{skip}\rrbracket &:= \varepsilon\\ \mathfrak{T}_{c}\llbracketx := a\rrbracket := \mathfrak{T}_{a}\llbracketa\rrbracket; \operatorname{STO}(x)\\ \mathfrak{T}_{c}\llbracketc_{1}; c_{2}\rrbracket := \mathfrak{T}_{c}\llbracketc_{1}\rrbracket; \mathfrak{T}_{c}\llbracketc_{2}\rrbracket\\ \mathfrak{T}_{c}\llbracket\mathbf{b} \text{ then } c_{1} \text{ else } c_{2} \text{ end}\rrbracket := \mathfrak{T}_{b}\llbracketb\rrbracket; \operatorname{JMPF}(|\mathfrak{T}_{c}\llbracketc_{1}\rrbracket|+2);\\ \mathfrak{T}_{c}\llbracketc_{1}\rrbracket; \operatorname{JMP}(|\mathfrak{T}_{c}\llbracketc_{2}\rrbracket|+1);\\ \mathfrak{T}_{c}\llbracketc_{2}\rrbracket\\ \mathfrak{T}_{c}\llbracket\mathbf{c}\rrbracket; \operatorname{JMPF}(|\mathfrak{T}_{c}\llbracket\mathbf{c}\rrbracket|+2);\\ \mathfrak{T}_{c}\llbracket\mathbf{c}\rrbracket; \operatorname{JMPF}(|\mathfrak{T}_{c}\llbracket\mathbf{c}\rrbracket|+2);\\ \mathfrak{T}_{c}\llbracket\mathbf{c}\rrbracket; \operatorname{JMPF}(|\mathfrak{T}_{c}\llbracket\mathbf{c}\rrbracket|+2); \end{split}$$

Timed Execution of Statements

Definition 17.3 (Timed execution relation for statements (extends Definition 3.2))

For $c \in Cmd$, $\sigma, \sigma' \in \Sigma$, and $\tau \in \mathbb{N}$, the timed execution relation $\langle c, \sigma \rangle \xrightarrow{\tau} \sigma'$ is defined by:

22 of 28 Semantics and Verification of Software Summer Semester 2015 Lecture 17: Axiomatic Semantics of WHILE V (Correctness Properties for Execution Time)

Outline of Lecture 17

Recap: Communicating Sequential Processes

Fairness in CSP

Correctness Properties for Execution Time

Operational Semantics with Exact Execution Times

Timed Correctness Properties

Recap: Total Correctness Properties

So far: total correctness properties of the form

 $\{A\} c \{\Downarrow B\}$

where $c \in Cmd$ and $A, B \in Assn$

Recap: Total Correctness Properties

So far: total correctness properties of the form

 $\{A\} c \{\Downarrow B\}$

where $c \in Cmd$ and $A, B \in Assn$

Validity of property $\{A\} c \{\Downarrow B\}$

For all states $\sigma \in \Sigma$ which satisfy *A*:

the execution of *c* in σ terminates and yields a state which satisfies *B*.

Now: timed correctness properties of the form

 $\{A\} c \{e \Downarrow B\}$

where $c \in Cmd$, $A, B \in Assn$, and $e \in AExp$

Now: timed correctness properties of the form

 $\{A\} c \{e \Downarrow B\}$

where $c \in Cmd$, $A, B \in Assn$, and $e \in AExp$

Validity of property $\{A\} c \{e \Downarrow B\}$

For all states $\sigma \in \Sigma$ which satisfy *A*: the execution of *c* in σ terminates in a state satisfying *B*, and the required execution time is in $\mathcal{O}(e)$

Now: timed correctness properties of the form

 $\{A\} c \{e \Downarrow B\}$

where $c \in Cmd$, $A, B \in Assn$, and $e \in AExp$

```
Validity of property \{A\} c \{e \Downarrow B\}
```

For all states $\sigma \in \Sigma$ which satisfy *A*: the execution of *c* in σ terminates in a state satisfying *B*, and the required execution time is in $\mathcal{O}(e)$

Example 17.4

1. $\{x = 3\}$ y:=1; while $\neg(x=1)$ do y:=y*x; x:=x-1 end $\{1 \Downarrow true\}$ expresses that for constant input 3, the execution time of the factorial program is bounded by a constant

Now: timed correctness properties of the form

 $\{A\} c \{e \Downarrow B\}$

where $c \in Cmd$, $A, B \in Assn$, and $e \in AExp$

Validity of property $\{A\} c \{e \Downarrow B\}$

For all states $\sigma \in \Sigma$ which satisfy *A*: the execution of *c* in σ terminates in a state satisfying *B*, and the required execution time is in $\mathcal{O}(e)$

Example 17.4

- 1. $\{x = 3\}$ y:=1; while $\neg(x=1)$ do y:=y*x; x:=x-1 end $\{1 \Downarrow true\}$ expresses that for constant input 3, the execution time of the factorial program is bounded by a constant
- 2. $\{x > 0\} y:=1$; while $\neg(x=1)$ do y:=y*x; x:=x-1 end $\{x \Downarrow true\}$ expresses that for positive inputs, the execution time of the factorial program is linear in that value

Semantics of Timed Correctness Properties

Definition 17.5 (Semantics of timed correctness properties (extends Definition 11.1))

Let $A, B \in Assn, c \in Cmd$, and $e \in AExp$. Then $\{A\} c \{e \Downarrow B\}$ is called valid (notation: $\models \{A\} c \{e \Downarrow B\}$) if there exists $k \in \mathbb{N}$ such that for each $I \in Int$ and each $\sigma \models^{I} A$, there exist $\sigma' \in \Sigma$ and $\tau \leq k \cdot \mathfrak{A}[e] \sigma$ such that $\langle c, \sigma \rangle \stackrel{\tau}{\longrightarrow} \sigma'$ and $\sigma' \models^{I} B$

Note: e is evaluated in initial (rather than final) state

Proving Timed Correctness I

Definition 17.6 (Hoare Logic for timed correctness (extends Definition 11.3))

The Hoare rules for timed correctness are given by (where $i, u \in LVar$) A skip $\{1 \Downarrow A\}$ $(\text{asgn}) \overline{\{A[x \mapsto a]\} x := a \{1 \Downarrow A\}}$ $\frac{\{A \land e_2' = u\} c_1 \{e_1 \Downarrow C \land e_2 \le u\} \{C\} c_2 \{e_2 \Downarrow B\}}{\{A\} c_1; c_2 \{e_1 + e_2' \Downarrow B\}}$ $(if) \frac{\{A \land b\} c_1 \{e \Downarrow B\} \{A \land \neg b\} c_2 \{e \Downarrow B\}}{\{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \text{ end } \{e \Downarrow B\}}$ $\overset{\text{(while)}}{\underbrace{\{i \geq 0 \land A(i+1) \land e' = u\} c \{e_0 \Downarrow A(i) \land e \leq u\}}}{\{\exists i.i \geq 0 \land A(i)\} \text{ while } b \text{ do } c \text{ end } \{e \Downarrow A(0)\}}$ where $\models (i \ge 0 \land A(i+1)) \Rightarrow (b \land e \ge e_0 + e')$ and $\models A(0) \Rightarrow (\neg b \land e \ge 1)$ $\models (A \Rightarrow (A' \land \exists k \in \mathbb{N}.e' \leq k \cdot e)) \ \{A'\} c \{e' \Downarrow B'\} \ \models (B' \Rightarrow B)$ (cons) $\{A\} c \{ \Downarrow e \} B$

27 of 28 Semantics and Verification of Software Summer Semester 2015 Lecture 17: Axiomatic Semantics of WHILE V (Correctness Properties for Execution Time)

Proving Timed Correctness II

Remarks:

(asgn) Assignment can be executed in constant time as size of expressions bounded by a constant

(seq) e_2 expresses time requirements of c_2 relative to initial state of c_2

- \Rightarrow cannot use $e_1 + e_2$ as time bound for c_1 ; c_2
- \Rightarrow replace e_2 by e'_2 such that value of e'_2 in initial state of c_1 bounds value of

 e_2 in initial state of c_2 (= final state of c_1)

(while) e₀/e represents execution time for body/whole loop

 \Rightarrow cannot use $e_0 + e$ for total time as e/e_0 refers to state before/after body is executed once

 \Rightarrow introduce e' whose evaluation before body bounds e evaluated after body $\Rightarrow e \ge e_0 + e'$ as e has to bound loop execution time independently of number of iterations (recurrence (in-)equation; cf. examples)

