
Semantics and Verification of Software
Summer Semester 2015

Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Online Registration for
Seminars and Practical Courses (Praktika)

in Winter Term 2015/16

Who?
Students of: ▪ Master Courses

▪ Bachelor Informatik (ProSeminar!)

Where?
www.graphics.rwth-aachen.de/apse

When?
25.06.2015 - 08.07.2015

Workshops
ProSiebenSat.1

IT-Sicherheit
Accenture

Consulting: Networks Analytics
(Anmeldung unter www.bonding.de/CyberDay)

8 Fachvorträge

Podiumsdiskussion
„Digitalisierung der Industrie -

Chancen und Risiken“

CyberDay

SuperC - Mittwoch 8. Juli 2015
Digitalisierung der Industrie -

von eCommerce bis zur Hybrid Cloud

www.bonding.de/CyberDay

bonding CyberDay 2015

Recap: Communicating Sequential Processes

Outline of Lecture 17

Recap: Communicating Sequential Processes

Fairness in CSP

Correctness Properties for Execution Time

Operational Semantics with Exact Execution Times

Timed Correctness Properties

5 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Recap: Communicating Sequential Processes

Syntax of CSP

Definition (Syntax of CSP)

The syntax of CSP is given by
a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | α?x | α!a |

c1; c2 | if gc fi | do gc od | c1 ‖ c2 ∈ Cmd
gc ::= b → c | b ∧ α?x → c | b ∧ α!a→ c | gc1 � gc2 ∈ GCmd

• In c1 ‖ c2, commands c1 and c2 must not use common variables (only local store)
• Guarded command gc1 � gc2 represents an alternative
• In b → c, b acts as a guard that enables the execution of c only if evaluated to true
• b∧α?x → c and b∧α!a→ c additionally require the respective I/O operation to be enabled
• If none of its alternatives is enabled, a guarded command gc fails (configuration fail)
• if nondeterministically picks an enabled alternative
• A do loop is iterated until its body fails

6 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Recap: Communicating Sequential Processes

Semantics of CSP I

Definition (Semantics of CSP – Commands (Cmd))

〈skip, σ〉 → 〈↓, σ〉
〈a, σ〉 → z

〈x := a, σ〉 → 〈↓, σ[x 7→ z]〉

〈α?x , σ〉 α?z−→ 〈↓, σ[x 7→ z]〉

〈a, σ〉 → z

〈α!a, σ〉 α!z−→ 〈↓, σ〉
〈c1, σ〉

λ−→ 〈c′1, σ′〉

〈c1; c2, σ〉
λ−→ 〈c′1; c2, σ

′〉

〈gc, σ〉 λ−→ 〈c, σ′〉

〈if gc fi, σ〉 λ−→ 〈c, σ′〉
〈gc, σ〉 λ−→ 〈c, σ′〉

〈do gc od, σ〉 λ−→ 〈c; do gc od, σ′〉

〈gc, σ〉 → fail

〈do gc od, σ〉 → 〈↓, σ〉

〈c1, σ〉
λ−→ 〈c′1, σ′〉

〈c1 ‖ c2, σ〉
λ−→ 〈c′1 ‖ c2, σ

′〉

〈c2, σ〉
λ−→ 〈c′2, σ′〉

〈c1 ‖ c2, σ〉
λ−→ 〈c1 ‖ c′2, σ

′〉
〈c1, σ〉

α?z−→ 〈c′1, σ′〉 〈c2, σ〉
α!z−→ 〈c′2, σ〉

〈c1 ‖ c2, σ〉 → 〈c′1 ‖ c′2, σ
′〉

〈c1, σ〉
α!z−→ 〈c′1, σ〉 〈c2, σ〉

α?z−→ 〈c′2, σ′〉
〈c1 ‖ c2, σ〉 → 〈c′1 ‖ c′2, σ

′〉

7 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Recap: Communicating Sequential Processes

Semantics of CSP II

Definition (Semantics of CSP – Guarded commands (GCmd))

〈b, σ〉 → true

〈b → c, σ〉 → 〈c, σ〉
〈b, σ〉 → false

〈b → c, σ〉 → fail

〈b, σ〉 → true

〈b ∧ α?x → c, σ〉 α?z−→ 〈c, σ[x 7→ z]〉

〈b, σ〉 → false

〈b ∧ α?x → c, σ〉 → fail

〈b, σ〉 → true 〈a, σ〉 → z

〈b ∧ α!a→ c, σ〉 α!z−→ 〈c, σ〉

〈b, σ〉 → false

〈b ∧ α!a→ c, σ〉 → fail

〈gc1, σ〉
λ−→ 〈c, σ′〉

〈gc1 � gc2, σ〉
λ−→ 〈c, σ′〉

〈gc2, σ〉
λ−→ 〈c, σ′〉

〈gc1 � gc2, σ〉
λ−→ 〈c, σ′〉

〈gc1, σ〉 → fail 〈gc2, σ〉 → fail

〈gc1 � gc2, σ〉 → fail

8 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Recap: Communicating Sequential Processes

CSP Examples

Example

(on the board)
1. do (true ∧ α?x → β!x) od

describes a process that repeatedly receives a value along α and forwards it along β (i.e., a
one-place buffer)

2. do true ∧ α?x → β!x od ‖ do true ∧ β?y → γ!y od

specifies a two-place buffer that receives along α and sends along γ (using β for internal
communication)

3. Nondeterministic choice between input channels:
i. if (true ∧ α?x → c1 � true ∧ β?y → c2) fi
ii. if (true→ (α?x; c1) � true→ (β?y ; c2)) fi
Expected: progress whenever environment provides data on α or β
i. correct
ii. incorrect (can deadlock)

9 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Fairness in CSP

Outline of Lecture 17

Recap: Communicating Sequential Processes

Fairness in CSP

Correctness Properties for Execution Time

Operational Semantics with Exact Execution Times

Timed Correctness Properties

10 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Fairness in CSP

Fairness I

• Informally: unfair behaviour excludes processes from being executed
• Here: consider parallel composition of n ≥ 1 sequential programs with executions of the

form κ0 → κ1 → κ2 → . . . where κj = 〈c(j)
1 ‖ . . . ‖ c(j)

n , σj〉 and, for some 1 ≤ i ≤ n and
k0 ∈ N, c(k)

i = c(k0)
i for all k ≥ k0

• But: only unfair if ci not enabled

Definition (Enabledness)

ci is enabled in configuration κ = 〈c1 ‖ . . . ‖ cn, σ〉 if there exists
κ′ = 〈c′1 ‖ . . . ‖ c′n, σ

′〉 with κ→ κ′ and c′i 6= ci .

Example

1. x := 0 enabled in 〈x := 0 ‖ y := 1, σ〉 (actually always enabled)
2. α?x enabled in 〈α?x ‖ α!0, σ〉
3. α?x not enabled in 〈α?x ‖ β!1, σ〉

11 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Fairness in CSP

Fairness I

• Informally: unfair behaviour excludes processes from being executed
• Here: consider parallel composition of n ≥ 1 sequential programs with executions of the

form κ0 → κ1 → κ2 → . . . where κj = 〈c(j)
1 ‖ . . . ‖ c(j)

n , σj〉 and, for some 1 ≤ i ≤ n and
k0 ∈ N, c(k)

i = c(k0)
i for all k ≥ k0

• But: only unfair if ci not enabled

Definition (Enabledness)

ci is enabled in configuration κ = 〈c1 ‖ . . . ‖ cn, σ〉 if there exists
κ′ = 〈c′1 ‖ . . . ‖ c′n, σ

′〉 with κ→ κ′ and c′i 6= ci .

Example

1. x := 0 enabled in 〈x := 0 ‖ y := 1, σ〉 (actually always enabled)
2. α?x enabled in 〈α?x ‖ α!0, σ〉
3. α?x not enabled in 〈α?x ‖ β!1, σ〉

11 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Fairness in CSP

Fairness I

• Informally: unfair behaviour excludes processes from being executed
• Here: consider parallel composition of n ≥ 1 sequential programs with executions of the

form κ0 → κ1 → κ2 → . . . where κj = 〈c(j)
1 ‖ . . . ‖ c(j)

n , σj〉 and, for some 1 ≤ i ≤ n and
k0 ∈ N, c(k)

i = c(k0)
i for all k ≥ k0

• But: only unfair if ci not enabled

Definition (Enabledness)

ci is enabled in configuration κ = 〈c1 ‖ . . . ‖ cn, σ〉 if there exists
κ′ = 〈c′1 ‖ . . . ‖ c′n, σ

′〉 with κ→ κ′ and c′i 6= ci .

Example

1. x := 0 enabled in 〈x := 0 ‖ y := 1, σ〉 (actually always enabled)
2. α?x enabled in 〈α?x ‖ α!0, σ〉
3. α?x not enabled in 〈α?x ‖ β!1, σ〉

11 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Fairness in CSP

Fairness II

Definition (Fairness)

An execution κ0 → κ1 → κ2 → . . . where κj = 〈c(j)1 ‖ . . . ‖ c(j)n , σj〉 and, for some

1 ≤ i ≤ n and k0 ∈ N, c(k)i = c(k0)
i for all k ≥ k0 is called

1. strongly unfair if c(k)
i is enabled in κk for all k ≥ k0

2. weakly unfair if c(k)
i is enabled in κk for infinitely many k ≥ k0

12 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Fairness in CSP

Fairness III

Example

1. 〈do true→ x := x + 1 od ‖ y := y + 1, . . .〉
→ 〈x := x + 1; do true→ x := x + 1 od ‖ y := y + 1, . . .〉
→ 〈do true→ x := x + 1 od ‖ y := y + 1, . . .〉 → . . .
is strongly unfair since y := y + 1 is always enabled

2. 〈do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉
→ 〈x := x + 1; do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉
→ 〈do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉 → . . .
is strongly unfair since both I/O operations are always enabled

3. 〈do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉
→ 〈skip; do α!1→ skip od ‖ skip; do α?x → skip od ‖ α?y , . . .〉
→ 〈skip; do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉
→ 〈do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉 → . . .
is weakly unfair since α?y is enabled in every third configuration

13 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Fairness in CSP

Fairness III

Example

1. 〈do true→ x := x + 1 od ‖ y := y + 1, . . .〉
→ 〈x := x + 1; do true→ x := x + 1 od ‖ y := y + 1, . . .〉
→ 〈do true→ x := x + 1 od ‖ y := y + 1, . . .〉 → . . .
is strongly unfair since y := y + 1 is always enabled

2. 〈do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉
→ 〈x := x + 1; do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉
→ 〈do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉 → . . .
is strongly unfair since both I/O operations are always enabled

3. 〈do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉
→ 〈skip; do α!1→ skip od ‖ skip; do α?x → skip od ‖ α?y , . . .〉
→ 〈skip; do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉
→ 〈do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉 → . . .
is weakly unfair since α?y is enabled in every third configuration

13 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Fairness in CSP

Fairness III

Example

1. 〈do true→ x := x + 1 od ‖ y := y + 1, . . .〉
→ 〈x := x + 1; do true→ x := x + 1 od ‖ y := y + 1, . . .〉
→ 〈do true→ x := x + 1 od ‖ y := y + 1, . . .〉 → . . .
is strongly unfair since y := y + 1 is always enabled

2. 〈do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉
→ 〈x := x + 1; do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉
→ 〈do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉 → . . .
is strongly unfair since both I/O operations are always enabled

3. 〈do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉
→ 〈skip; do α!1→ skip od ‖ skip; do α?x → skip od ‖ α?y , . . .〉
→ 〈skip; do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉
→ 〈do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉 → . . .
is weakly unfair since α?y is enabled in every third configuration

13 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Correctness Properties for Execution Time

Outline of Lecture 17

Recap: Communicating Sequential Processes

Fairness in CSP

Correctness Properties for Execution Time

Operational Semantics with Exact Execution Times

Timed Correctness Properties

14 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Correctness Properties for Execution Time

The Approach

• Definition 11.3: proof system for total correctness
• Can be used to show that program terminates bus does not give any information about

required resources

• Goal: extend proof system to give (order of magnitude of) execution time of a statement
• Details in H.R. Nielson, F. Nielson: Semantics with Applications: An Appetizer, Springer,

Section 10.2
• Informal guidelines (idea: each instruction of abstract machine takes one time unit):

– skip: execution timeO(1) (that is, bounded by a constant)
– assignment: execution timeO(1) (with maximal size of RHS as constant)
– composition: sum of execution times of constituent statements
– conditional: maximal execution time of branches
– iteration: sum over all iterations of execution times of loop body

• Procedure:
1. Extend evaluation relation for expressions to give exact evaluation times
2. Extend execution relation for statements to give exact execution times
3. Extend total correctness proof system to give order of magnitude of execution time of statements

15 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Correctness Properties for Execution Time

The Approach

• Definition 11.3: proof system for total correctness
• Can be used to show that program terminates bus does not give any information about

required resources
• Goal: extend proof system to give (order of magnitude of) execution time of a statement
• Details in H.R. Nielson, F. Nielson: Semantics with Applications: An Appetizer, Springer,

Section 10.2

• Informal guidelines (idea: each instruction of abstract machine takes one time unit):
– skip: execution timeO(1) (that is, bounded by a constant)
– assignment: execution timeO(1) (with maximal size of RHS as constant)
– composition: sum of execution times of constituent statements
– conditional: maximal execution time of branches
– iteration: sum over all iterations of execution times of loop body

• Procedure:
1. Extend evaluation relation for expressions to give exact evaluation times
2. Extend execution relation for statements to give exact execution times
3. Extend total correctness proof system to give order of magnitude of execution time of statements

15 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Correctness Properties for Execution Time

The Approach

• Definition 11.3: proof system for total correctness
• Can be used to show that program terminates bus does not give any information about

required resources
• Goal: extend proof system to give (order of magnitude of) execution time of a statement
• Details in H.R. Nielson, F. Nielson: Semantics with Applications: An Appetizer, Springer,

Section 10.2
• Informal guidelines (idea: each instruction of abstract machine takes one time unit):

– skip: execution timeO(1) (that is, bounded by a constant)
– assignment: execution timeO(1) (with maximal size of RHS as constant)
– composition: sum of execution times of constituent statements
– conditional: maximal execution time of branches
– iteration: sum over all iterations of execution times of loop body

• Procedure:
1. Extend evaluation relation for expressions to give exact evaluation times
2. Extend execution relation for statements to give exact execution times
3. Extend total correctness proof system to give order of magnitude of execution time of statements

15 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Correctness Properties for Execution Time

The Approach

• Definition 11.3: proof system for total correctness
• Can be used to show that program terminates bus does not give any information about

required resources
• Goal: extend proof system to give (order of magnitude of) execution time of a statement
• Details in H.R. Nielson, F. Nielson: Semantics with Applications: An Appetizer, Springer,

Section 10.2
• Informal guidelines (idea: each instruction of abstract machine takes one time unit):

– skip: execution timeO(1) (that is, bounded by a constant)
– assignment: execution timeO(1) (with maximal size of RHS as constant)
– composition: sum of execution times of constituent statements
– conditional: maximal execution time of branches
– iteration: sum over all iterations of execution times of loop body

• Procedure:
1. Extend evaluation relation for expressions to give exact evaluation times
2. Extend execution relation for statements to give exact execution times
3. Extend total correctness proof system to give order of magnitude of execution time of statements

15 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Operational Semantics with Exact Execution Times

Outline of Lecture 17

Recap: Communicating Sequential Processes

Fairness in CSP

Correctness Properties for Execution Time

Operational Semantics with Exact Execution Times

Timed Correctness Properties

16 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Operational Semantics with Exact Execution Times

Recap: Translation of Arithmetic Expressions

Definition (Translation of arithmetic expressions (Definition 5.1))

The translation function
TaJ.K : AExp → Code

is given by
TaJzK := PUSH(z)
TaJxK := LOAD(x)

TaJa1+a2K := TaJa1K;TaJa2K;ADD
TaJa1-a2K := TaJa1K;TaJa2K;SUB
TaJa1*a2K := TaJa1K;TaJa2K;MULT

17 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Operational Semantics with Exact Execution Times

Timed Evaluation of Arithmetic Expressions

Definition 17.1 (Timed Evaluation of arithmetic expressions (extends Definition 2.2))

Expression a evaluates to z ∈ Z in state σ in τ ∈ N steps (notation: 〈a, σ〉 τ−→ z) if
this relationship is derivable by means of the following rules:
Axioms:

〈z, σ〉 1−→ z 〈x, σ〉 1−→ σ(x)

Rules:
〈a1, σ〉

τ1−→ z1 〈a2, σ〉
τ2−→ z2

〈a1+a2, σ〉
τ1+τ2+1−→ z

where z := z1 + z2

〈a1, σ〉
τ1−→ z1 〈a2, σ〉

τ2−→ z2

〈a1-a2, σ〉
τ1+τ2+1−→ z

where z := z1 − z2

〈a1, σ〉
τ1−→ z1 〈a2, σ〉

τ2−→ z2

〈a1*a2, σ〉
τ1+τ2+1−→ z

where z := z1 · z2

18 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Operational Semantics with Exact Execution Times

Recap: Translation of Boolean Expressions

Definition (Translation of Boolean expressions (Definition 5.3))

The translation function
TbJ.K : BExp → Code

is given by
TbJtrueK := PUSH(true)
TbJfalseK := PUSH(false)
TbJa1=a2K := TaJa1K;TaJa2K;EQ
TbJa1>a2K := TaJa1K;TaJa2K;GT

TbJ¬bK := TbJbK;NOT
TbJb1 ∧ b2K := TbJb1K;TbJb2K;AND
TbJb1 ∨ b2K := TbJb1K;TbJb2K;OR

19 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Operational Semantics with Exact Execution Times

Timed Evaluation of Boolean Expressions

Definition 17.2 (Timed Evaluation of Boolean expressions (extends Definition 2.7))

For b ∈ BExp, σ ∈ Σ, τ ∈ N, and t ∈ B, the timed evaluation relation 〈b, σ〉 τ−→ t
is defined by:

〈t, σ〉 1−→ t

〈a1, σ〉
τ1−→ z 〈a2, σ〉

τ2−→ z

〈a1=a2, σ〉
τ1+τ2+1−→ true

〈a1, σ〉
τ1−→ z1 〈a2, σ〉

τ2−→ z2

〈a1=a2, σ〉
τ1+τ2+1−→ false

if z1 6= z2

〈a1, σ〉
τ1−→ z1 〈a2, σ〉

τ2−→ z2

〈a1>a2, σ〉
τ1+τ2+1−→ true

if z1 > z2
〈a1, σ〉

τ1−→ z1 〈a2, σ〉
τ2−→ z2

〈a1>a2, σ〉
τ1+τ2+1−→ false

if z1 ≤ z2

〈b, σ〉 τ−→ false

〈¬b, σ〉 τ+1−→ true

〈b, σ〉 τ−→ true

〈¬b, σ〉 τ+1−→ false

〈b1, σ〉
τ1−→ true 〈b2, σ〉

τ2−→ true

〈b1 ∧ b2, σ〉
τ1+τ2+1−→ true

〈b1, σ〉
τ1−→ true 〈b2, σ〉

τ2−→ false

〈b1 ∧ b2, σ〉
τ1+τ2+1−→ false

〈b1, σ〉
τ1−→ false 〈b2, σ〉

τ2−→ true

〈b1 ∧ b2, σ〉
τ1+τ2+1−→ false

〈b1, σ〉
τ1−→ false 〈b2, σ〉

τ2−→ false

〈b1 ∧ b2, σ〉
τ1+τ2+1−→ false

(∨ analogously)

20 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Operational Semantics with Exact Execution Times

Recap: Translation of Statements

Definition (Translation of statements (Definition 5.4))

The translation function TcJ.K : Cmd → Code is given by

TcJskipK := ε
TcJx := aK := TaJaK;STO(x)
TcJc1;c2K := TcJc1K;TcJc2K

TcJif b then c1 else c2 endK := TbJbK;JMPF(|TcJc1K| + 2);
TcJc1K;JMP(|TcJc2K| + 1);
TcJc2K

TcJwhile b do c endK := TbJbK;JMPF(|TcJcK| + 2);
TcJcK;JMP(−(|TbJbK| + |TcJcK| + 1))

21 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Operational Semantics with Exact Execution Times

Timed Execution of Statements

Definition 17.3 (Timed execution relation for statements (extends Definition 3.2))

For c ∈ Cmd , σ, σ′ ∈ Σ, and τ ∈ N, the timed execution relation 〈c, σ〉 τ−→ σ′ is
defined by:

(skip)

〈skip, σ〉 1−→ σ
(asgn)

〈a, σ〉 τ−→ z

〈x := a, σ〉 τ+1−→ σ[x 7→ z]

(seq)

〈c1, σ〉
τ1−→ σ′ 〈c2, σ

′〉 τ2−→ σ′′

〈c1;c2, σ〉
τ1+τ2−→ σ′′

(if-t)

〈b, σ〉 τ−→ true 〈c1, σ〉
τ1−→ σ′

〈if b then c1 else c2 end, σ〉
τ+τ1+2−→ σ′

(wh-f)

〈b, σ〉 τ−→ false

〈while b do c end, σ〉 τ+1−→ σ
(if-f)

〈b, σ〉 τ−→ false 〈c2, σ〉
τ2−→ σ′

〈if b then c1 else c2 end, σ〉
τ+τ2+1−→ σ′

(wh-t)

〈b, σ〉 τ−→ true 〈c, σ〉 τ1−→ σ′ 〈while b do c end, σ′〉 τ2−→ σ′′

〈while b do c end, σ〉 τ+τ1+τ2+2−→ σ′′

22 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Timed Correctness Properties

Outline of Lecture 17

Recap: Communicating Sequential Processes

Fairness in CSP

Correctness Properties for Execution Time

Operational Semantics with Exact Execution Times

Timed Correctness Properties

23 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Timed Correctness Properties

Recap: Total Correctness Properties

So far: total correctness properties of the form

{A} c {⇓B}
where c ∈ Cmd and A,B ∈ Assn

Validity of property {A} c {⇓B}

For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

24 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Timed Correctness Properties

Recap: Total Correctness Properties

So far: total correctness properties of the form

{A} c {⇓B}
where c ∈ Cmd and A,B ∈ Assn

Validity of property {A} c {⇓B}

For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

24 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Timed Correctness Properties

Timed Correctness Properties

Now: timed correctness properties of the form

{A} c {e⇓B}
where c ∈ Cmd , A,B ∈ Assn, and e ∈ AExp

Validity of property {A} c {e⇓B}

For all states σ ∈ Σ which satisfy A: the execution of c in σ terminates in a state
satisfying B, and the required execution time is in O(e)

Example 17.4

1. {x = 3} y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end {1⇓ true} expresses that for
constant input 3, the execution time of the factorial program is bounded by a constant

2. {x > 0} y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end {x⇓ true} expresses that for
positive inputs, the execution time of the factorial program is linear in that value

25 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Timed Correctness Properties

Timed Correctness Properties

Now: timed correctness properties of the form

{A} c {e⇓B}
where c ∈ Cmd , A,B ∈ Assn, and e ∈ AExp

Validity of property {A} c {e⇓B}

For all states σ ∈ Σ which satisfy A: the execution of c in σ terminates in a state
satisfying B, and the required execution time is in O(e)

Example 17.4

1. {x = 3} y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end {1⇓ true} expresses that for
constant input 3, the execution time of the factorial program is bounded by a constant

2. {x > 0} y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end {x⇓ true} expresses that for
positive inputs, the execution time of the factorial program is linear in that value

25 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Timed Correctness Properties

Timed Correctness Properties

Now: timed correctness properties of the form

{A} c {e⇓B}
where c ∈ Cmd , A,B ∈ Assn, and e ∈ AExp

Validity of property {A} c {e⇓B}

For all states σ ∈ Σ which satisfy A: the execution of c in σ terminates in a state
satisfying B, and the required execution time is in O(e)

Example 17.4

1. {x = 3} y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end {1⇓ true} expresses that for
constant input 3, the execution time of the factorial program is bounded by a constant

2. {x > 0} y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end {x⇓ true} expresses that for
positive inputs, the execution time of the factorial program is linear in that value

25 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Timed Correctness Properties

Timed Correctness Properties

Now: timed correctness properties of the form

{A} c {e⇓B}
where c ∈ Cmd , A,B ∈ Assn, and e ∈ AExp

Validity of property {A} c {e⇓B}

For all states σ ∈ Σ which satisfy A: the execution of c in σ terminates in a state
satisfying B, and the required execution time is in O(e)

Example 17.4

1. {x = 3} y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end {1⇓ true} expresses that for
constant input 3, the execution time of the factorial program is bounded by a constant

2. {x > 0} y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end {x⇓ true} expresses that for
positive inputs, the execution time of the factorial program is linear in that value

25 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Timed Correctness Properties

Semantics of Timed Correctness Properties

Definition 17.5 (Semantics of timed correctness properties (extends Definition 11.1))

Let A,B ∈ Assn, c ∈ Cmd , and e ∈ AExp. Then {A} c {e⇓B} is called valid
(notation: |= {A} c {e⇓B}) if there exists k ∈ N such that for each I ∈ Int and each
σ |=I A, there exist σ′ ∈ Σ and τ ≤ k · AJeKσ such that 〈c, σ〉 τ−→ σ′ and σ′ |=I B

Note: e is evaluated in initial (rather than final) state

26 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Timed Correctness Properties

Proving Timed Correctness I

Definition 17.6 (Hoare Logic for timed correctness (extends Definition 11.3))

The Hoare rules for timed correctness are given by (where i, u ∈ LVar)
(skip)

{A} skip {1⇓A}
(asgn)

{A[x 7→ a]} x := a {1⇓A}

(seq)

{A ∧ e′2 = u} c1 {e1⇓C ∧ e2 ≤ u} {C} c2 {e2⇓B}
{A} c1;c2 {e1 + e′2⇓B}

(if)

{A ∧ b} c1 {e⇓B} {A ∧ ¬b} c2 {e⇓B}
{A} if b then c1 else c2 end {e⇓B}

(while)

{i ≥ 0 ∧ A(i + 1) ∧ e′ = u} c {e0⇓A(i) ∧ e ≤ u}
{∃i.i ≥ 0 ∧ A(i)} while b do c end {e⇓A(0)}

where |= (i ≥ 0 ∧ A(i + 1))⇒ (b ∧ e ≥ e0 + e′) and |= A(0)⇒ (¬b ∧ e ≥ 1)

(cons)

|= (A⇒ (A′ ∧ ∃k ∈ N.e′ ≤ k · e)) {A′} c {e′⇓B′} |= (B′ ⇒ B)

{A} c {⇓e}B

27 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

Timed Correctness Properties

Proving Timed Correctness II

Remarks:
(asgn) Assignment can be executed in constant time as size of expressions

bounded by a constant
(seq) e2 expresses time requirements of c2 relative to initial state of c2

⇒ cannot use e1 + e2 as time bound for c1;c2

⇒ replace e2 by e′2 such that value of e′2 in initial state of c1 bounds value of
e2 in initial state of c2 (= final state of c1)

(while) e0/e represents execution time for body/whole loop
⇒ cannot use e0 + e for total time as e/e0 refers to state before/after body is
executed once
⇒ introduce e′ whose evaluation before body bounds e evaluated after body
⇒ e ≥ e0 + e′ as e has to bound loop execution time independently of
number of iterations (recurrence (in-)equation; cf. examples)

28 of 28 Semantics and Verification of Software
Summer Semester 2015
Lecture 17: Axiomatic Semantics of WHILE V
(Correctness Properties for Execution Time)

	Recap: Communicating Sequential Processes
	Fairness in CSP
	Correctness Properties for Execution Time
	Operational Semantics with Exact Execution Times
	Timed Correctness Properties

