Semantics and Verification of Software

Summer Semester 2015

Lecture 15: Nondeterminism and Parallelism |
(Shared-Variables Communication)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

’ Software Modeling

‘ Il and Verification Chair

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

e 26, Juni O
InFordetikzentrum 2 15

.. Karriere e ~ -
. 13 30 Firmenkontaktmesse . v
. Science Tunnel
@ Ort: Foyer und Korridor Hauptbau '

Kluge Kopfe b .
1530 Festveranstaltung R=i==

Absolventenfeier @

Ort: Aula 2 Hauptbau

Coole Party
1930 Eré6ffnung des Buffets
2030-0200 Party mit Live-Band und DJ
: Ort: Foyer E2 und Parkplatz

.

Introduction

Motivation
e Essential question: what is the meaning of
ci || e

(parallel execution of ¢, ¢, € Cmd)?
e Easy to answer when state spaces are disjoint:

(x :=1ly := 2,0) > o[x—1,y— 2]

(no interaction = corresponds to sequential execution)
e But what if variables are shared?

(x := 1] x := 2);if x = 1 then ¢y else ¢, end

(runs cq or ¢, depending on execution order of initial assignments)
e Even more complicated for non-atomic assignments...

4 0f 19 Semantics and Verification of Software
Summer Semester 2015

L . Software Modeling
Lecture 15: Nondeterminism and Parallelism | A)
(Shared-Variables Communication) ‘ B and Verification Chair

RWTH

Introduction

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 15.1
x := 0;
(x := x+ 1] x := x + 2) value of x: 0123
13 2

e At first glance: x is assigned 3
e But: both parallel components could read x before it is written
e Thus: x is assigned 2, 1, or 3

e If exclusive (write) access to shared memory and atomic execution of assignments
guaranteed
= only possible outcome: 3

50f 19 Semantics and Verification of Software
Summer Semester 2015
Software Modeling

Lecture 15: Nondeterminism and Parallelism | o)
(Shared-Variables Communication) ‘ Il and Verification Chair

RWTH

Introduction

Parallelism and Interaction

The problem arises due to the combination of
e parallelism and
e interaction (here: via shared memory)

Conclusion

When defining the semantics of parallel systems, the precise description of the
mechanisms of both parallelism and interaction is crucially important.

6 of 19 Semantics and Verification of Software
Summer Semester 2015
Software Modeling

Lecture 15: Nondeterminism and Parallelism | A .
(Shared-Variables Communication) ‘ Il and Verification Chair

RWTH

Introduction

Reactive Systems
e Thus: “classical’ model for sequential systems
System : Input — Output

(transformational systems) is not adequate
e Missing: aspect of interaction
e Rather: reactive systems which interact with environment and among themselves

e Main interest: not terminating computations but infinite behaviour
(system maintains ongoing interaction with environment)

e Examples:
— operating systems
— embedded systems controlling mechanical or electrical devices

(planes, cars, home appliances, ...)
— power plants, production lines, ...

7 of 19 Semantics and Verification of Software Rm
Summer Semester 2015 Sof Modeli
Lecture 15: Nondeterminism and Parallelism | ‘ - agdtv:rri(feica(:iozlggair

(Shared-Variables Communication)

Introduction

Overview

Here: study of parallelism in connection with two different kinds of interaction
1. Shared-variables communication (ParWHILE)
2. Channel communication (CSP)

Essential principle:

e Reduction of parallelism to nondeterminism + sequential execution
(similar to multitasking on sequential computers)

Preparatory step:
e Semantic description of nondeterminism

8 0of 19 Semantics and Verification of Software
Summer Semester 2015

. . Software Modeling
Lecture 15: Nondeterminism and Parallelism | o)
(Shared-Variables Communication) ‘ B and Verification Chair

RWTH

Nondeterminism

The NdWHILE Language

Definition 15.2 (Syntax of NdWHILE)

a.—=2 | X ’ aitao ‘ ai—ao | aj*xa, € AExp

=1 | a{=ado ‘ a{>ao | —b ‘ by N\ b, ‘ by V by € BEXp

n=skip | x :=a| c;c | if bthen ¢y else ¢ end | while bdo ¢ end |
ci e € Cmd

O O

Here, ¢ [¢, stands for the nondeterministic choice between statements ¢; and c..

10 of 19 Semantics and Verification of Software
Summer Semester 2015
Software Modeling

Lecture 15: Nondeterminism and Parallelism | o)
(Shared-Variables Communication) ‘ Il and Verification Chair

RWTH

Nondeterminism

Big-Step Semantics
Definition 15.3 (Big-step execution relation for NAWHILE)

For c € Cmd and 0,0’ € L, the execution relation (¢, 0) — ¢’ is defined by:

a — Z
(skip) . (asgn) < 70_>
(skip,0) = 0 (x :=a,0) = o[x — Z]
(c1,0) = 0’ (¢, 0") = d” (b,o) — true (cy,0) — o’

(seq) (if-t)

(c1;00,0) = 0" (if b then ¢y else ¢, end, o) — o’
(b,o) — false (co,0) — o’ (b, o) — false

(wh-f)

(if-f)

(if b then ¢y else ¢, end, o) — o’ (while bdo cend, o) — o
(b,o) — true {c,0) — ¢’ (while bdo cend,o’) — o”
(while bdo cend,o) — o”
(c1,0) — o’ (co,0) — 0’

<C1 [] CQ,O'> — o’ - <C1 [] CQ,O'> — o’

(wh-t)

(alt-1)

11 0f 19 Semantics and Verification of Software Rm
Summer Semester 2015 _
Lecture 15: Nondeterminism and Parallelism | ‘ = gg:jt“",':rri?ig?sﬂ'gﬂair

(Shared-Variables Communication)

Nondeterminism

Small-Step Semantics |

e Description of parallelism will require small-step execution relation —+ for statements
e Introduces explicit representation of intermediate configurations
e To minimize number of rules: uniform treatment of configurations of the form

(c,o) e Cmd x Yand o € ¥:

— o interpreted as (|, o) with “terminated” command .

— | satisfies |;c = ¢

—thus:read (| ; x := 0,0)as (x := 0,0)

12 of 19 Semantics and Verification of Software
Summer Semester 2015

RWTH

L . Software Modeling
Lecture 15: Nondeterminism and Parallelism | A)
(Shared-Variables Communication) ‘ B and Verification Chair

Nondeterminism

Small-Step Semantics Il

Definition 15.4 (Small-step execution relation for NdWHILE)

The small-step execution relation, —; C (Cmd x ¥) x (Cmd x ¥), is defined by the following
rules:

(a,0) — z
(skip, o) —1 (J,0) (x :=a,0) =1 (J,0[x — 2])
(c1,0) =1 (c},0’) (b,o) — true
(c1; 0, 0) —1 (C}; 00, 0) (if b then ¢y else ¢ end, o) —4 (¢, 0)
(b,o) — false (b,o) — false
(if b then ¢y else ¢ end, o) —1 (G, 0) (while bdo c end, o) —4 ({,0)

(b,o) — true
(while bdo c end, o) —¢ (c;while bdo c end, o)

<C1|:|CQ,O'> —1 <C1,0'> <C1|:|CQ,O'> —1 <CQ,O'>
13 of 19 Semantics and Verification of Software
Summer Semester 2015 o _ Rm
Lecture 15: Nondeterminism and Parallelism | ‘ - ggat“"l':r'i‘f’ig‘:i‘:‘i:'gﬂair

(Shared-Variables Communication)

Nondeterminism

Small-Step Semantics lll

Remarks:

e Possible to show: big-step and small-step semantics are equivalent, i.e., for all c € Cmd
and 0,0’ € X:

(c,o0) =0 < (c,0) =} ,0)

e Alternative (equivalent) formalisation of choice:

/ / / /
(c1,0) —1 (c},0") (Co,0) —1 (Ch,0")
/ / / /
(ci U o, 0) —1 (cf,d") (ci U o, 0) —1 (5, 0")
14 of 19 Semantics and Verification of Software
Summer Semester 2015 o Software Modeling Rm
roiure, |5 Nondeterminism and Paralilism | M s ericaion o

Shared-Variables Communication

The ParWHILE Language

Definition 15.5 (Syntax of ParWHILE)

a..—=2 | X ’ aitao ‘ a{—a | ai{*a» € AEXp

b=t | a{=as ‘ ai>ao | —b ‘ b1 /\b2 ‘ b1 \/b2 c BEXp
c:=skip|x:=a|ci;c | if bthen ¢y else ¢, end | while bdo ¢ end |
ci || 2 € Cmd
16 of 19 zizinetirc; :r:zs\t/::if;c(:)?t;on of Software o | Rm
Lecture 15: Nondeterminism and Parallelism | ‘ = gg:‘t“"":rri?ig‘;sﬂ'gﬂair

(Shared-Variables Communication)

Shared-Variables Communication

Semantics of ParWHILE |

e Approach for defining semantics:
— assignments are executed atomically
— parallelism is modeled by interleaving, i.e., the actions of parallel statements are merged
= Reduction of parallelism to nondeterminism + sequential execution
(similar to multitasking on sequential computers)

e Requires small-step execution relation for statements (cf. Definition 15.4)
e Again: “terminated” command |

— | additionally satisfies | || c =c ||] = ¢

— Thus:read (| ; x := 0],0)as(x := 0,0)

17 of 19 Semantics and Verification of Software
Summer Semester 2015

RWTH

L . Software Modeling
Lecture 15: Nondeterminism and Parallelism | A)
(Shared-Variables Communication) ‘ B and Verification Chair

Shared-Variables Communication

Semantics of ParWHILE i
Definition 15.6 (Small-step execution relation for ParWHILE)

The small-step execution relation, —; C (Cmd x ¥) x (Cmd x ¥), is defined by the following
rules:

(a,0) — z
(skip, o) =1 ({,0) (x:=a,0) =1 ({,0[x — 2])
(cy,0) —4 (c}, ") (b,o) — true
(cy; €2, 0) =1 (Cf; 00, 0") (if b then ¢y else ¢ end, o) —1 (Cy,0)
(b,o) — false (b,o) — false
(if b then ¢y else ¢ end, o) —1 (¢, 0) (while bdo cend, o) —1 ({,0)

(b, o) — true
(while bdo c end, o) —¢ (c;while bdo cend, o)

(c1,0) =1 (c1,0") (C2,0) =1 (G, 07)
(¢1 || e2,0) =1 (¢} || &2, 0") (1 || e2,0) =1 (c1 || 6,07)
18 of 19 zizinetirc; :r:zs\t/::if;c(:)?t;on of Software o | Rm
L geture 15: Nondetgrmiriem and Foralelm | M o

Shared-Variables Communication

Semantics of ParWHILE llI
Example 15.7

Letc:=(x:=1| x:=2);if x =1thencselsec,endando € L.
(c,0) =1 (X :=2;if x = 1 then ¢y else ¢, end, o[x — 1])
(1,0) =1

(x :=1,0) =1 {{,0[x — 1])
(x =1|x:=2,0) =1 ||| x:=2,0[x — 1])
—¢ (if x = 1 then ¢y else ¢, end, o[x — 2])

(2,0) — 2
(x :=2,0) =1 ({,0[x — 2])
—1 (G, 0[x — 2])

since

since

(x,o0[x—=2]) 22 (1,0[x+—2]) =1
(x =1,0[x — 2]) — false

since

Analogously: (¢, o) —3 (¢, o[x — 1])

19 of 19 Semantics and Verification of Software
Summer Semester 2015

L . Software Modeling
Lecture 15: Nondeterminism and Parallelism | ‘ A)
(Shared-Variables Communication) B and Verification Chair

RWTH

	Introduction
	Nondeterminism
	Shared-Variables Communication

