

Semantics and Verification of Software

Summer Semester 2015

Lecture 15: Nondeterminism and Parallelism I (Shared-Variables Communication)

Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

50 MMER **FEST 26. Juni** Informatikzentrum

 \bigcirc

 $\textcircled{\bullet}$

 \bigcirc

Karriere 13 ³⁰ Firmenkontaktmesse Science Tunnel Ort: Foyer und Korridor Hauptbau

 \bigcirc

 \bigcirc

 \odot

Kluge Köpfe 15 ³⁰ Festveranstaltung Absolventenfeier Ort: Aula 2 Hauptbau

Coole Party 19³⁰ Eröffnung des Buffets 20³⁰-02⁰⁰ Party mit Live-Band und DJ Ort: Foyer E2 und Parkplatz

Outline of Lecture 15

Introduction

Nondeterminism

Shared-Variables Communication

4 of 19

• Essential question: what is the meaning of

 $C_1 \parallel C_2$

(parallel execution of $c_1, c_2 \in Cmd$)?

• Essential question: what is the meaning of

 $c_1 \parallel c_2$

(parallel execution of $c_1, c_2 \in Cmd$)?

• Easy to answer when state spaces are disjoint:

 $\langle \mathbf{x} := \mathbf{1} \parallel \mathbf{y} := \mathbf{2}, \sigma \rangle \rightarrow \sigma[\mathbf{x} \mapsto \mathbf{1}, \mathbf{y} \mapsto \mathbf{2}]$

(no interaction \Rightarrow corresponds to sequential execution)

Essential question: what is the meaning of

 $c_1 \parallel c_2$

(parallel execution of $c_1, c_2 \in Cmd$)?

• Easy to answer when state spaces are disjoint:

 $\langle \mathbf{x} := \mathbf{1} \parallel \mathbf{y} := \mathbf{2}, \sigma \rangle \rightarrow \sigma[\mathbf{x} \mapsto \mathbf{1}, \mathbf{y} \mapsto \mathbf{2}]$

(no interaction \Rightarrow corresponds to sequential execution)

But what if variables are shared?

 $(x := 1 || x := 2); if x = 1 then C_1 else C_2 end$

(runs c_1 or c_2 depending on execution order of initial assignments)

Essential question: what is the meaning of

 $c_1 \parallel c_2$

(parallel execution of $c_1, c_2 \in Cmd$)?

• Easy to answer when state spaces are disjoint:

 $\langle \mathbf{x} := \mathbf{1} \parallel \mathbf{y} := \mathbf{2}, \sigma \rangle \rightarrow \sigma [\mathbf{x} \mapsto \mathbf{1}, \mathbf{y} \mapsto \mathbf{2}]$

(no interaction \Rightarrow corresponds to sequential execution)

But what if variables are shared?

 $(x := 1 || x := 2); if x = 1 then C_1 else C_2 end$

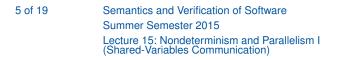
(runs c_1 or c_2 depending on execution order of initial assignments)

• Even more complicated for non-atomic assignments...

Observation: parallelism introduces new phenomena

$$x := 0;$$

(x := x + 1 || x := x + 2)



Observation: parallelism introduces new phenomena

Example 15.1

$$x := 0;$$

(x := x + 1 || x := x + 2)

• At first glance: x is assigned 3

Observation: parallelism introduces new phenomena

$$x := 0;$$

(x := x + 1 || x := x + 2)

- At first glance: x is assigned 3
- But: both parallel components could read \mathbf{x} before it is written

Observation: parallelism introduces new phenomena

$$x := 0;$$

(x := x + 1 || x := x + 2) value of x: 0

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written

Observation: parallelism introduces new phenomena

$$x := 0;$$

(x := x + 1 || x := x + 2) value of x: 0
1

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written

Observation: parallelism introduces new phenomena

- At first glance: x is assigned 3
- But: both parallel components could read \mathbf{x} before it is written

Observation: parallelism introduces new phenomena

- At first glance: x is assigned 3
- But: both parallel components could read \mathbf{x} before it is written

Observation: parallelism introduces new phenomena

- At first glance: x is assigned 3
- But: both parallel components could read \mathbf{x} before it is written
- Thus: x is assigned 2,

Observation: parallelism introduces new phenomena

$$x := 0;$$

(x := x + 1 || x := x + 2) value of x: 0

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2,

Observation: parallelism introduces new phenomena

$$x := 0;$$

(x := x + 1 || x := x + 2) value of x: 0
1

- At first glance: x is assigned 3
- But: both parallel components could read \mathbf{x} before it is written
- Thus: x is assigned 2,

Observation: parallelism introduces new phenomena

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2,

Observation: parallelism introduces new phenomena

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2,

Observation: parallelism introduces new phenomena

$$x := 0;$$

(x := x + 1 || x := x + 2) value of x: 1
1

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1,

Observation: parallelism introduces new phenomena

$$x := 0;$$

(x := x + 1 || x := x + 2) value of x: 0

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1,

Observation: parallelism introduces new phenomena

$$x := 0;$$

(x := x + 1 || x := x + 2) value of x: 0
2

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1,

Observation: parallelism introduces new phenomena

- At first glance: x is assigned 3
- But: both parallel components could read \mathbf{x} before it is written
- Thus: x is assigned 2, 1,

Observation: parallelism introduces new phenomena

x := 0;
(x :=
$$x + 1 || x := x + 2$$
) value of x: 2
3

- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1,

Observation: parallelism introduces new phenomena

$$x := 0;$$

(x := x + 1 || x := x + 2) value of x: 3
3

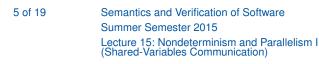
- At first glance: x is assigned 3
- But: both parallel components could read x before it is written
- Thus: x is assigned 2, 1, or 3

Observation: parallelism introduces new phenomena

$$x := 0;$$

(x := x + 1 || x := x + 2)

- At first glance: x is assigned 3
- But: both parallel components could read \mathbf{x} before it is written
- Thus: x is assigned 2, 1, or 3
- If exclusive (write) access to shared memory and atomic execution of assignments guaranteed
 - \Rightarrow only possible outcome: 3



Introduction

Parallelism and Interaction

The problem arises due to the combination of

- parallelism and
- interaction (here: via shared memory)

Introduction

Parallelism and Interaction

The problem arises due to the combination of

- parallelism and
- interaction (here: via shared memory)

Conclusion

When defining the semantics of parallel systems, the precise description of the mechanisms of both parallelism and interaction is crucially important.

Reactive Systems

• Thus: "classical" model for sequential systems

 $System: Input \rightarrow Output$

(transformational systems) is not adequate

• Missing: aspect of interaction

7 of 19

Reactive Systems

• Thus: "classical" model for sequential systems

System : Input \rightarrow Output

(transformational systems) is not adequate

Missing: aspect of interaction

Summer Semester 2015

Rather: reactive systems which interact with environment and among themselves

Reactive Systems

• Thus: "classical" model for sequential systems

 $System: Input \rightarrow Output$

(transformational systems) is not adequate

- Missing: aspect of interaction
- Rather: reactive systems which interact with environment and among themselves
- Main interest: not terminating computations but infinite behaviour (system maintains ongoing interaction with environment)
- Examples:
 - operating systems
 - embedded systems controlling mechanical or electrical devices (planes, cars, home appliances, ...)
 - power plants, production lines, ...

Overview

8 of 19

Here: study of parallelism in connection with two different kinds of interaction

- 1. Shared-variables communication (ParWHILE)
- 2. Channel communication (CSP)

Summer Semester 2015

(Shared-Variables Communication)

Overview

Here: study of parallelism in connection with two different kinds of interaction

- 1. Shared-variables communication (ParWHILE)
- 2. Channel communication (CSP)

Essential principle:

 Reduction of parallelism to nondeterminism + sequential execution (similar to multitasking on sequential computers)

Overview

Here: study of parallelism in connection with two different kinds of interaction

- 1. Shared-variables communication (ParWHILE)
- 2. Channel communication (CSP)

Essential principle:

 Reduction of parallelism to nondeterminism + sequential execution (similar to multitasking on sequential computers)

Preparatory step:

• Semantic description of nondeterminism

Outline of Lecture 15

Introduction

Nondeterminism

Shared-Variables Communication

The NdWHILE Language

Definition 15.2 (Syntax of NdWHILE)

$$\begin{array}{l} a::=z \mid x \mid a_{1}+a_{2} \mid a_{1}-a_{2} \mid a_{1}*a_{2} \in AExp \\ b::=t \mid a_{1}=a_{2} \mid a_{1}>a_{2} \mid \neg b \mid b_{1} \wedge b_{2} \mid b_{1} \vee b_{2} \in BExp \\ c::= \mathrm{skip} \mid x:=a \mid c_{1}; c_{2} \mid \mathrm{if} \ b \ \mathrm{then} \ c_{1} \ \mathrm{else} \ c_{2} \ \mathrm{end} \mid \mathrm{while} \ b \ \mathrm{do} \ c \ \mathrm{end} \\ c_{1} \ \Box \ c_{2} \in Cmd \end{array}$$

Here, $c_1 \square c_2$ stands for the nondeterministic choice between statements c_1 and c_2 .

Big-Step Semantics

Definition 15.3 (Big-step execution relation for NdWHILE)

For $c \in Cmd$ and $\sigma, \sigma' \in \Sigma$, the execution relation $\langle c, \sigma \rangle \to \sigma'$ is defined by: $\langle \boldsymbol{a}, \sigma \rangle \rightarrow \boldsymbol{z}$ $\overline{\langle \texttt{skip}, \sigma} \rangle \to \sigma$ $(asgn) \overline{\langle \mathbf{x} := \mathbf{a}, \sigma \rangle} \to \sigma [\mathbf{x} \mapsto \mathbf{z}]$ $\frac{\langle \boldsymbol{c}_1, \sigma \rangle \to \sigma' \ \langle \boldsymbol{c}_2, \sigma' \rangle \to \sigma''}{\langle \boldsymbol{c}_1; \boldsymbol{c}_2, \sigma \rangle \to \sigma''} \qquad \qquad \frac{\langle \boldsymbol{b}, \sigma \rangle \to \mathsf{true} \ \langle \boldsymbol{c}_1, \sigma \rangle \to \sigma'}{\langle \mathsf{if} \ \boldsymbol{b} \ \mathsf{then} \ \boldsymbol{c}_1 \ \mathsf{else} \ \boldsymbol{c}_2 \ \mathsf{end}, \sigma \rangle \to \sigma'}$ (seq)⁻ $\frac{\langle \boldsymbol{b}, \sigma \rangle \to \text{false } \langle \boldsymbol{c}_2, \sigma \rangle \to \sigma'}{\langle \text{if } \boldsymbol{b} \text{ then } \boldsymbol{c}_1 \text{ else } \boldsymbol{c}_2 \text{ end}, \sigma \rangle \to \sigma'} \qquad \frac{\langle \boldsymbol{b}, \sigma \rangle \to \text{false}}{\langle \text{while } \boldsymbol{b} \text{ do } \boldsymbol{c} \text{ end}, \sigma \rangle \to \sigma}$ $\langle \mathbf{b}, \sigma \rangle \to \mathsf{true} \ \langle \mathbf{c}, \sigma \rangle \to \sigma' \ \langle \mathsf{while} \ \mathbf{b} \ \mathsf{do} \ \mathbf{c} \ \mathsf{end}, \sigma' \rangle \to \sigma''$ (wh-t) (while *b* do *c* end, σ) $\rightarrow \sigma''$ $\frac{\langle \mathbf{C}_{1}, \sigma \rangle \to \sigma'}{\langle \mathbf{C}_{1} \Box \mathbf{C}_{2}, \sigma \rangle \to \sigma'}$ $\frac{\langle \mathbf{C}_{2}, \sigma \rangle \to \sigma'}{\langle \mathbf{C}_{1} \Box \mathbf{C}_{2}, \sigma \rangle \to \sigma'}$

Small-Step Semantics I

- Description of parallelism will require small-step execution relation \rightarrow_1 for statements
- Introduces explicit representation of intermediate configurations

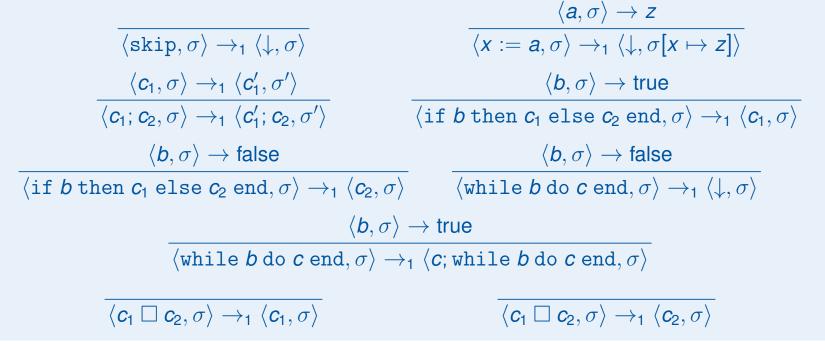
Small-Step Semantics I

- Description of parallelism will require small-step execution relation \rightarrow_1 for statements
- Introduces explicit representation of intermediate configurations
- To minimize number of rules: uniform treatment of configurations of the form $\langle c, \sigma \rangle \in Cmd \times \Sigma$ and $\sigma \in \Sigma$:
 - σ interpreted as $\langle\downarrow,\sigma\rangle$ with "terminated" command \downarrow
 - $-\downarrow$ satisfies \downarrow ; c = c
 - thus: read $\langle\downarrow$; x := 0, $\sigma\rangle$ as $\langle {\tt x}$:= 0, $\sigma\rangle$

Small-Step Semantics II

Definition 15.4 (Small-step execution relation for NdWHILE)

The small-step execution relation, $\rightarrow_1 \subseteq (Cmd \times \Sigma) \times (Cmd \times \Sigma)$, is defined by the following rules:



Small-Step Semantics III

Remarks:

Possible to show: big-step and small-step semantics are equivalent, i.e., for all *c* ∈ *Cmd* and σ, σ' ∈ Σ:

$$\langle \boldsymbol{c}, \sigma \rangle \to \sigma' \iff \langle \boldsymbol{c}, \sigma \rangle \to_1^* \langle \downarrow, \sigma' \rangle$$

Small-Step Semantics III

Remarks:

• Possible to show: big-step and small-step semantics are equivalent, i.e., for all $c \in Cmd$ and $\sigma, \sigma' \in \Sigma$:

$$\langle \boldsymbol{c}, \sigma \rangle \to \sigma' \iff \langle \boldsymbol{c}, \sigma \rangle \to_1^* \langle \downarrow, \sigma' \rangle$$

• Alternative (equivalent) formalisation of choice:

$$\frac{\langle \boldsymbol{c}_{1}, \sigma \rangle \rightarrow_{1} \langle \boldsymbol{c}_{1}^{\prime}, \sigma^{\prime} \rangle}{\langle \boldsymbol{c}_{1} \Box \boldsymbol{c}_{2}, \sigma \rangle \rightarrow_{1} \langle \boldsymbol{c}_{1}^{\prime}, \sigma^{\prime} \rangle} \qquad \frac{\langle \boldsymbol{c}_{2}, \sigma \rangle \rightarrow_{1} \langle \boldsymbol{c}_{2}^{\prime}, \sigma^{\prime} \rangle}{\langle \boldsymbol{c}_{1} \Box \boldsymbol{c}_{2}, \sigma \rangle \rightarrow_{1} \langle \boldsymbol{c}_{2}^{\prime}, \sigma^{\prime} \rangle}$$

Outline of Lecture 15

Introduction

Nondeterminism

Shared-Variables Communication

The ParWHILE Language

Definition 15.5 (Syntax of ParWHILE)

$$\begin{array}{l} a::=z \mid x \mid a_{1}+a_{2} \mid a_{1}-a_{2} \mid a_{1}*a_{2} \in AExp \\ b::=t \mid a_{1}=a_{2} \mid a_{1}>a_{2} \mid \neg b \mid b_{1} \wedge b_{2} \mid b_{1} \vee b_{2} \in BExp \\ c::= \mathrm{skip} \mid x:=a \mid c_{1}; c_{2} \mid \mathrm{if} \ b \ \mathrm{then} \ c_{1} \ \mathrm{else} \ c_{2} \ \mathrm{end} \mid \mathrm{while} \ b \ \mathrm{do} \ c \ \mathrm{end} \\ \hline c_{1} \mid \mid c_{2} \in Cmd \end{array}$$

- Approach for defining semantics:
 - assignments are executed atomically
 - parallelism is modeled by interleaving, i.e., the actions of parallel statements are merged
- ⇒ Reduction of parallelism to nondeterminism + sequential execution (similar to multitasking on sequential computers)

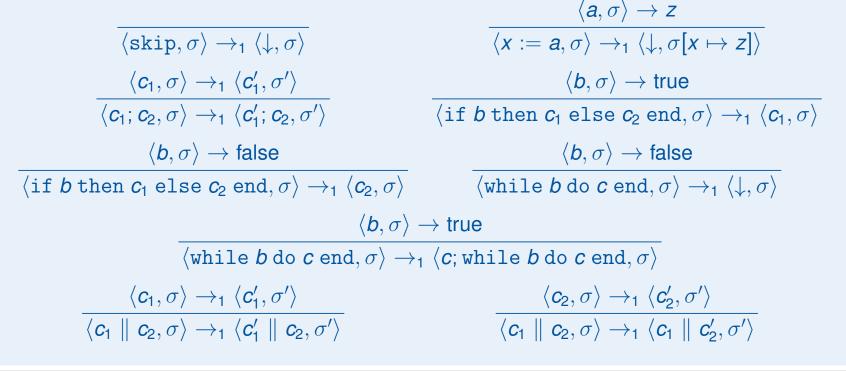
- Approach for defining semantics:
 - assignments are executed atomically
 - parallelism is modeled by interleaving, i.e., the actions of parallel statements are merged
- ⇒ Reduction of parallelism to nondeterminism + sequential execution (similar to multitasking on sequential computers)
 - Requires small-step execution relation for statements (cf. Definition 15.4)
 - Again: "terminated" command \downarrow
 - $-\downarrow$ additionally satisfies $\downarrow \parallel c = c \parallel \downarrow = c$
 - Thus: read $\langle \downarrow ; x := 0 || \downarrow, \sigma \rangle$ as $\langle x := 0, \sigma \rangle$

Shared-Variables Communication

Semantics of ParWHILE II

Definition 15.6 (Small-step execution relation for ParWHILE)

The small-step execution relation, $\rightarrow_1 \subseteq (Cmd \times \Sigma) \times (Cmd \times \Sigma)$, is defined by the following rules:



Example 15.7

Let c := (x := 1 || x := 2); if x = 1 then c_1 else c_2 end and $\sigma \in \Sigma$.

Example 15.7

Let c := (x := 1 || x := 2); if x = 1 then c_1 else c_2 end and $\sigma \in \Sigma$. $\langle c, \sigma \rangle \rightarrow_1 \langle x := 2$; if x = 1 then c_1 else c_2 end, $\sigma[x \mapsto 1] \rangle$ $\overline{\langle 1, \sigma \rangle \rightarrow 1}$ since $\frac{\langle 1, \sigma \rangle \rightarrow 1}{\langle x := 1, \sigma \rangle \rightarrow_1 \langle \downarrow, \sigma[x \mapsto 1] \rangle}$ $\overline{\langle x := 1 || x := 2, \sigma \rangle \rightarrow_1 \langle \downarrow || x := 2, \sigma[x \mapsto 1] \rangle}$

Example 15.7

Let c := (x := 1 || x := 2); if x = 1 then c_1 else c_2 end and $\sigma \in \Sigma$. $\langle c, \sigma \rangle \rightarrow_1 \langle x := 2$; if x = 1 then c_1 else c_2 end, $\sigma[x \mapsto 1] \rangle$ $\overline{\langle 1, \sigma \rangle \rightarrow 1}$ since $\frac{\overline{\langle 1, \sigma \rangle \rightarrow 1}}{\langle x := 1, \sigma \rangle \rightarrow_1 \langle \downarrow, \sigma[x \mapsto 1] \rangle}$ $\rightarrow_1 \langle \text{if } x = 1 \text{ then } c_1 \text{ else } c_2 \text{ end}, \sigma[x \mapsto 2] \rangle$ $\overline{\langle x := 2, \sigma \rangle \rightarrow_1 \langle \downarrow, \sigma[x \mapsto 2] \rangle}$

Example 15.7

Let c := (x := 1 || x := 2); if x = 1 then c_1 else c_2 end and $\sigma \in \Sigma$. $\langle c, \sigma \rangle \rightarrow_1 \langle x := 2; \text{ if } x = 1 \text{ then } c_1 \text{ else } c_2 \text{ end}, \sigma[x \mapsto 1] \rangle$ $\langle \mathbf{1}, \sigma \rangle \rightarrow \mathbf{1}$ $\langle x := 1, \sigma \rangle \rightarrow_1 \langle \downarrow, \sigma[x \mapsto 1] \rangle$ since $\overline{\langle x := 1 \parallel x := 2, \sigma \rangle \rightarrow_1 \langle \downarrow \parallel x := 2, \sigma[x \mapsto 1] \rangle}$ \rightarrow_1 (if x = 1 then c_1 else c_2 end, $\sigma[x \mapsto 2]$) $\frac{\langle \mathbf{2}, \sigma \rangle \to \mathbf{2}}{\langle \mathbf{x} := \mathbf{2}, \sigma \rangle \to_1 \langle \downarrow, \sigma [\mathbf{x} \mapsto \mathbf{2}] \rangle}$ since $\rightarrow_1 \langle c_2, \sigma[x \mapsto 2] \rangle$ since $\frac{\langle x, \sigma[x \mapsto 2] \rangle \rightarrow 2 \quad \langle 1, \sigma[x \mapsto 2] \rangle \rightarrow 1}{\langle x = 1, \sigma[x \mapsto 2] \rangle \rightarrow \text{false}}$

Example 15.7

Let c := (x := 1 || x := 2); if x = 1 then c_1 else c_2 end and $\sigma \in \Sigma$. $\langle c, \sigma \rangle \rightarrow_1 \langle x := 2; \text{ if } x = 1 \text{ then } c_1 \text{ else } c_2 \text{ end}, \sigma[x \mapsto 1] \rangle$ $\langle \mathbf{1}, \sigma \rangle \rightarrow \mathbf{1}$ $\langle x := 1, \sigma \rangle \rightarrow_1 \langle \downarrow, \sigma[x \mapsto 1] \rangle$ since $\overline{\langle x := 1 \parallel x := 2, \sigma \rangle \rightarrow_1 \langle \downarrow \parallel x := 2, \sigma[x \mapsto 1] \rangle}$ $\rightarrow_1 \langle \text{if } x = 1 \text{ then } c_1 \text{ else } c_2 \text{ end}, \sigma[x \mapsto 2] \rangle$ $\frac{\langle \mathbf{2}, \sigma \rangle \to \mathbf{2}}{\langle \mathbf{x} := \mathbf{2}, \sigma \rangle \to_1 \langle \downarrow, \sigma [\mathbf{x} \mapsto \mathbf{2}] \rangle}$ since $\rightarrow_1 \langle c_2, \sigma[x \mapsto 2] \rangle$ since $\frac{\langle x, \sigma[x \mapsto 2] \rangle \rightarrow 2 \quad \langle \overline{1, \sigma[x \mapsto 2]} \rangle \rightarrow 1}{\langle x = 1, \sigma[x \mapsto 2] \rangle \rightarrow \text{false}}$

Analogously: $\langle \boldsymbol{c}, \sigma \rangle \rightarrow^3_1 \langle \boldsymbol{c}_1, \sigma[\boldsymbol{x} \mapsto \boldsymbol{1}] \rangle$

