
Semantics and Verification of Software
Summer Semester 2015

Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Extension by Blocks and Procedures

Blocks and Procedures

• Extension of WHILE by blocks with (local) variables and (recursive) procedures
• Simple memory model (Σ := {σ | σ : Var → Z}) not sufficient anymore as variables can

occur in several instances
⇒ Involves new semantic concepts:

– variable und procedure environments
– locations (memory addresses) and stores (memory states)

• Important: scope of variable and procedure identifiers
static scoping: scope of identifier = declaration environment

(also: “lexical” scoping; here)
dynamic scoping: scope of identifier = calling environment

(old Algol/Lisp dialects)

3 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extension by Blocks and Procedures

Static and Dynamic Scoping

Example 13.1
begin
var x; var y;
proc P is y := x end;
x := 1;
begin
var x;
x := 2;
call P

end
end

static scoping⇒ y = 1
dynamic scoping⇒ y = 2

4 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extending the Syntax

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p ::= proc P is c end;p | ε ∈ PDec
v ::= var x;v | ε ∈ VDec
c ::= skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end |

call P | begin v p c end ∈ Cmd

• All used variable/procedure identifiers have to be declared
• Identifiers declared within a block must be distinct

6 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

New Semantic Domains

Locations and Stores

• So far: states Σ = {σ | σ : Var → Z}
• Now: explicit control over all (nested) instances of a variable:

– variable environments VEnv := {ρ | ρ : Var 99K Loc}
(partial function to maintain declaredness information)

– locations Loc := N
– stores Sto := {σ | σ : Loc 99K Z}

(partial function to maintain allocation information)
⇒ Two-level access to a variable x ∈ Var :

1. determine current memory location of x :
l := ρ(x)

2. reading/writing access to σ at position l

• Thus: previous state information represented as σ ◦ ρ

8 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

New Semantic Domains

Procedure Environments and Declarations

• Effect of procedure call determined by its body and variable and procedure environment of
its declaration:

PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}
denotes the set of procedure environments
• Effect of declaration: update of environment (and store)

updvJ.K : VDec × VEnv × Sto→ VEnv × Sto
updvJvar x;vK(ρ, σ) := updvJvK(ρ[x 7→ lx], σ[lx 7→ 0])

updvJεK(ρ, σ) := (ρ, σ)

updpJ.K : PDec × VEnv × PEnv → PEnv
updpJproc P is c end;pK(ρ, π) := updpJpK(ρ, π[P 7→ (c, ρ, π)])

updpJεK(ρ, π) := π

where lx := min{l ∈ Loc | σ(l) = ⊥}

9 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Execution Relation

Execution Relation I

Definition 13.2 (Execution relation)

For c ∈ Cmd , σ, σ′ ∈ Sto, ρ ∈ VEnv , and π ∈ PEnv , the execution relation
(ρ, π) ` 〈c, σ〉 → σ′ (“in environment (ρ, π), statement c transforms store σ into σ′”)
is defined by the following rules:

(skip)

(ρ, π) ` 〈skip, σ〉 → σ

(asgn)

〈a, σ ◦ ρ〉 → z

(ρ, π) ` 〈x := a, σ〉 → σ[ρ(x) 7→ z]

(seq)

(ρ, π) ` 〈c1, σ〉 → σ′ (ρ, π) ` 〈c2, σ
′〉 → σ′′

(ρ, π) ` 〈c1;c2, σ〉 → σ′′

(if-t)

〈b, σ ◦ ρ〉 → true (ρ, π) ` 〈c1, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2 end, σ〉 → σ′

11 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Execution Relation

Execution Relation II

Definition 13.2 (Execution relation; continued)

(if-f)

〈b, σ ◦ ρ〉 → false (ρ, π) ` 〈c2, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2 end, σ〉 → σ′

(wh-f)

〈b, σ ◦ ρ〉 → false

(ρ, π) ` 〈while b do c end, σ〉 → σ

(wh-t)

〈b, σ ◦ ρ〉→ true (ρ, π)`〈c, σ〉→σ′ (ρ, π)`〈while b do c end, σ′〉→σ′′

(ρ, π) ` 〈while b do c end, σ〉 → σ′′

(call)

(ρ′, π′[P 7→ (c, ρ′, π′)]) ` 〈c, σ〉 → σ′

(ρ, π) ` 〈call P, σ〉 → σ′
if π(P) = (c, ρ′, π′)

(block)

updvJvK(ρ, σ) = (ρ′, σ′) (ρ′, updpJpK(ρ′, π)) ` 〈c, σ′〉 → σ′′

(ρ, π) ` 〈begin v p c end, σ〉 → σ′′

12 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Execution Relation

Execution Relation III

Remarks about rules (call) and (block):
• Static scoping is modelled in (call) by using the environments ρ′ and π′ (as determined in

(block)) from the declaration site of procedure P (and not ρ and π from the calling site)
• In (call), the procedure environment associated with procedure P is extended by a P-entry

to handle recursive calls of P:
π′[P 7→ (c, ρ′, π′)]

13 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Execution Relation

Execution Relation IV

Example 13.3
begin
var x; var y; } v
proc F is
begin
var z;
z:=x;
if z=1 then skip

else x:=x-1; call F; y:=z*y end } c2

}
c1

end

cF

end;

p

x:=2; y:=1; call F } c0
end

c

Let σ∅(l) = ρ∅(x) = π∅(P) = ⊥ for all l ∈ Loc, x ∈ Var ,P ∈ PVar
Notation: σijkl ⇔ σ(0) = i, σ(1) = j, σ(2) = k , σ(3) = l
Derivation tree for (ρ∅, π∅) ` 〈c, σ∅〉 → σ1221: on the board

14 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

	Extension by Blocks and Procedures
	Extending the Syntax
	New Semantic Domains
	Execution Relation

