Semantics and Verification of Software

Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

’ Software Modeling

‘ Il and Verification Chair

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Extension by Blocks and Procedures

Outline of Lecture 13

Extension by Blocks and Procedures

20of 14 Semantics and Verification of Software
Summer Semester 2015 Soft Modeli
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - ar(:d “",':rri?ica‘:iozlgﬂair

RWTH

Extension by Blocks and Procedures

Blocks and Procedures

e Extension of WHILE by blocks with (local) variables and (recursive) procedures

3of 14 Semantics and Verification of Software
Summer Semester 2015 Soft Modeli
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - ar(:d “",':rri?ica(:iozlgﬂair

RWTH

Extension by Blocks and Procedures

Blocks and Procedures

e Extension of WHILE by blocks with (local) variables and (recursive) procedures

e Simple memory model (X := {0 | o : Var — Z}) not sufficient anymore as variables can
occur in several instances
= Involves new semantic concepts:

— variable und procedure environments
— locations (memory addresses) and stores (memory states)

3of 14 Semantics and Verification of Software
Summer Semester 2015 Soft Modeli
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - ar(:d “",':rri?ica(:iozlgﬂair

RWTH

Extension by Blocks and Procedures

Blocks and Procedures

e Extension of WHILE by blocks with (local) variables and (recursive) procedures

e Simple memory model (X := {0 | o : Var — Z}) not sufficient anymore as variables can

occur in several instances
= Involves new semantic concepts:

— variable und procedure environments
— locations (memory addresses) and stores (memory states)

e Important: scope of variable and procedure identifiers
static scoping: scope of identifier = declaration environment

(also: “lexical” scoping; here)

dynamic scoping: scope of identifier = calling environment

(old Algol/Lisp dialects)
3of 14 Semantics and Verification of Software Rm
Summer Semester 2015 .
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - gg:jt“",'::ﬁig?ﬂﬂ'gﬂair

Extension by Blocks and Procedures

Static and Dynamic Scoping

Example 13.1
begin
var x; var y,
proc P 1s y := X end;
x := 1;
begin
var X;
X = 2;
call P
end
end

4 0of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics)

4

: Software Modeling

Il and Verification Chair

RWTH

Extension by Blocks and Procedures

Static and Dynamic Scoping

Example 13.1
begin
var x; var y,
proc P 1s y := X end;
x := 1;
begin
var X;
X = 2;
call P
end
end

static scoping = y =1

4 0of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics)

4

: Software Modeling

Il and Verification Chair

RWTH

Extension by Blocks and Procedures

Static and Dynamic Scoping

Example 13.1
begin
var x; var y,
proc P i1s y := X end;
x := 1;
begin
var X;
X = 2;
call P
end
end

static scoping = y =1
dynamic scoping = y = 2

4 0of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics)

4

: Software Modeling

Il and Verification Chair

RWTH

Extending the Syntax

Outline of Lecture 13

Extending the Syntax

50f 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics)

)

4

Software Modeling
Il and Verification Chair

RWTH

Extending the Syntax

Extending the Syntax

Syntactic categories:
Category Domain

Meta variable

Procedure identifiers PVar = {P,Q,
Procedure declarations PDec
Variable declarations VDec
Commands (statements) Cmd

TP

p
v

C

6 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics)

n

4

Software Modeling
Il and Verification Chair

RWTH

Extending the Syntax

Extending the Syntax
Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P,Q,...} P

Procedure declarations PDec p

Variable declarations VDec v
Commands (statements) Cmd C

Context-free grammar:

p::=proc Piscend;p|e € PDec

vi=var x;v | e € VDec

c:=skip | x :=a|cy;c | if bthen ¢y else ¢; end | while bdo ¢ end |
call P | begin v pcend € Cmd

RWTH

6 of 14 Semantics and Verification of Software
Summer Semester 2015 Soft Modeli
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - ar(:d “",':rri?ica(:iozlgﬂair

Extending the Syntax

Extending the Syntax
Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P,Q,...} P

Procedure declarations PDec p

Variable declarations VDec v
Commands (statements) Cmd C

Context-free grammar:

p::=proc Piscend;p|e € PDec

vi=var x;v | e € VDec

c:=skip | x :=a|cy;c | if bthen ¢y else ¢; end | while bdo ¢ end |
call P | begin v pcend € Cmd

e All used variable/procedure identifiers have to be declared
e |dentifiers declared within a block must be distinct

RWTH

6 of 14 Semantics and Verification of Software
Summer Semester 2015 Soft Modeli
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - ar(:d “",':rri?ica(:iozlgﬂair

New Semantic Domains

Outline of Lecture 13

New Semantic Domains

7 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics)

)

4

Software Modeling
Il and Verification Chair

RWTH

New Semantic Domains

Locations and Stores

e Sofar: states> = {o | o : Var — Z}

8 of 14 Semantics and Verification of Software
Summer Semester 2015 _
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - gs:‘t“",':rrﬁig‘;sﬂ'gﬂair

RWTH

New Semantic Domains

Locations and Stores

e Sofar: states> = {o | o : Var — Z}
e Now: explicit control over all (nested) instances of a variable:
— variable environments VEnv := {p | p : Var --» Loc}
(partial function to maintain declaredness information)
— locations Loc := N
— stores Sto := {0 | 0 : Loc --+ Z}
(partial function to maintain allocation information)

8 of 14 Semantics and Verification of Software
Summer Semester 2015 _
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - gg:jtv:rri?ig?sﬂ'gﬂair

RWTH

New Semantic Domains

Locations and Stores

e Sofar: states> = {o | o : Var — Z}
e Now: explicit control over all (nested) instances of a variable:
— variable environments VEnv := {p | p : Var --» Loc}
(partial function to maintain declaredness information)
— locations Loc := N
— stores Sto := {0 | 0 : Loc --+ Z}
(partial function to maintain allocation information)
— Two-level access to a variable x € Var:
1. determine current memory location of x:
I:= p(x)
2. reading/writing access to o at position /

e Thus: previous state information represented as o o p

8 of 14 Semantics and Verification of Software
Summer Semester 2015 _
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - gg:jtv:rri?ig?ﬂ'gﬂair

RWTH

New Semantic Domains

Procedure Environments and Declarations

e Effect of procedure call determined by its body and variable and procedure environment of
its declaration:
PEnv := {x | ® : PVar --+ Cmd x VEnv x PEnv}

denotes the set of procedure environments

9 of 14 Semantics and Verification of Software
Summer Semester 2015 _
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - gg:jtv:rri?ig?ﬂ'gﬂair

RWTH

New Semantic Domains

Procedure Environments and Declarations

e Effect of procedure call determined by its body and variable and procedure environment of
its declaration:
PEnv := {x | ® : PVar --+ Cmd x VEnv x PEnv}

denotes the set of procedure environments
e Effect of declaration: update of environment (and store)
upd,[.] : VDec x VEnv x Sto — VEnv x Sto
upd, [var x; v](p,o) :=upd,[v](p[x — k], o[k — 0])
upd, [¢](p, o) = (p, o)
upd,[.] : PDec x VEnv x PEnv — PEnv

upd,[proc P is ¢ end;p](p,) := upd,[p](p, 7[P — (¢, p,m)])
upd,[e](p, 7) =7

where [, := min{/ € Loc | o(/) = L}

RWTH

9 of 14 Semantics and Verification of Software
Summer Semester 2015 _
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - gg:jtv:rri?ig?sﬂ'gﬂair

Execution Relation

Outline of Lecture 13

Execution Relation

10 of 14 Semantics and Verification of Software
Summer Semester 2015 _
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ = gg:‘t“"":rri?ig‘;sﬂ'gﬂair

RWTH

Execution Relation

Execution Relation |
Definition 13.2 (Execution relation)

Forc € Cmd, 0,0’ € Sto, p € VEnv, and m € PEnv, the execution relation
(p,m) F (c,0) — &’ (“in environment (p,), statement c transforms store ¢ into ")
is defined by the following rules:

(skip)

(p,m) F (skip,0) — o
- (a,00p) — z
“(p,) (x i=a,0) = olp(x) — Z]

(0, M) F (e, 0) = 0" (p,m)F (e, 0) = 0"
(p,m) F (c1;¢,0) — 0"

(seq)

(b,oop) —true (p,m)F (c1,0) = o

(if-t)

(p,m) F (if b then ¢y else ¢, end, o) — o’

Lecture 13: Extension by Blocks and Procedures | (Operational Semantics)

11 of 14 Semantics and Verification of Software Rm
Summer Semester 2015
Software Modeling

Il and Verification Chair

Execution Relation

Execution Relation Il

Definition 13.2 (Execution relation; continued)

(b,oop) —false (p,7)F (co,0) — 0
(p,m) = (if bthen ¢y else ¢y end,0) — o’

(if-f)

(b, o p) — false
(p,m) F (while bdo cend,o) — o

(wh-f)

I

(b,0 0 p)—true (p,m)F{c,0) —0c" (p,7)F (while bdo cend,o’) —>0o

(wh-t)

(p,m) F (while bdo cend, o) — o
(o, 7'[P— (c,p),7)]) F (c,0) = o
(p,m) F (call P,o) — o'

upd, [v](p, o) = (p', ") (p';upd,[p](p’, 7)) F (¢, o) = 0"
(p,) F (beginv pcend, o) — o”

it 7(P) = (c, o',)

(call)

(block)

RWTH

12 of 14 Semantics and Verification of Software
Summer Semester 2015
Software Modeling

Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) B and Verification Chair

Execution Relation

Execution Relation Il

Remarks about rules (call) and (block):
e Static scoping is modelled in (call) by using the environments p’ and 7’ (as determined in
(block)) from the declaration site of procedure P (and not p and 7 from the calling site)
e In (call), the procedure environment associated with procedure P is extended by a P-entry
to handle recursive calls of P:
T [P (c,p,7)]

13 of 14 Semantics and Verification of Software
Summer Semester 2015 _
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) ‘ - gg:jt“",':rrﬁig(:ﬂﬂlgﬂair

RWTH

Execution Relation

Execution Relation IV

Example 13.3
begin k
var x; var y; }v
proc F 1is)
begin)
var z;
Z:=X;
if z=1 then skip e ®
else x:=x-1; call F; y:=z*y end }c G
end)
end;)
x:=2; y:=1; call F }¢
end)
Let oy(/) = py(x) = my(P) = L forall | € Loc, x € Var, P € PVar
Notation: ojiy < o(0) =i,0(1) =j,0(2) = k,0(3) = |
Derivation tree for (py, 7p) = (c, 0p) — T1221: on the board
T e emesa ot n | RWNTH
Lecture 13: Extension by Blocks and Procedures | (Operational Semantics) M o Sotware Modeling

	Extension by Blocks and Procedures
	Extending the Syntax
	New Semantic Domains
	Execution Relation

