
Semantics and Verification of Software
Summer Semester 2015

Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Extension by Blocks and Procedures

Outline of Lecture 13

Extension by Blocks and Procedures

Extending the Syntax

New Semantic Domains

Execution Relation

2 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extension by Blocks and Procedures

Blocks and Procedures

• Extension of WHILE by blocks with (local) variables and (recursive) procedures

• Simple memory model (Σ := {σ | σ : Var → Z}) not sufficient anymore as variables can
occur in several instances

⇒ Involves new semantic concepts:
– variable und procedure environments
– locations (memory addresses) and stores (memory states)

• Important: scope of variable and procedure identifiers
static scoping: scope of identifier = declaration environment

(also: “lexical” scoping; here)
dynamic scoping: scope of identifier = calling environment

(old Algol/Lisp dialects)

3 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extension by Blocks and Procedures

Blocks and Procedures

• Extension of WHILE by blocks with (local) variables and (recursive) procedures
• Simple memory model (Σ := {σ | σ : Var → Z}) not sufficient anymore as variables can

occur in several instances
⇒ Involves new semantic concepts:

– variable und procedure environments
– locations (memory addresses) and stores (memory states)

• Important: scope of variable and procedure identifiers
static scoping: scope of identifier = declaration environment

(also: “lexical” scoping; here)
dynamic scoping: scope of identifier = calling environment

(old Algol/Lisp dialects)

3 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extension by Blocks and Procedures

Blocks and Procedures

• Extension of WHILE by blocks with (local) variables and (recursive) procedures
• Simple memory model (Σ := {σ | σ : Var → Z}) not sufficient anymore as variables can

occur in several instances
⇒ Involves new semantic concepts:

– variable und procedure environments
– locations (memory addresses) and stores (memory states)

• Important: scope of variable and procedure identifiers
static scoping: scope of identifier = declaration environment

(also: “lexical” scoping; here)
dynamic scoping: scope of identifier = calling environment

(old Algol/Lisp dialects)

3 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extension by Blocks and Procedures

Static and Dynamic Scoping

Example 13.1
begin
var x; var y;
proc P is y := x end;
x := 1;
begin
var x;
x := 2;
call P

end
end

static scoping⇒ y = 1
dynamic scoping⇒ y = 2

4 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extension by Blocks and Procedures

Static and Dynamic Scoping

Example 13.1
begin
var x; var y;
proc P is y := x end;
x := 1;
begin
var x;
x := 2;
call P

end
end

static scoping⇒ y = 1

dynamic scoping⇒ y = 2

4 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extension by Blocks and Procedures

Static and Dynamic Scoping

Example 13.1
begin
var x; var y;
proc P is y := x end;
x := 1;
begin
var x;
x := 2;
call P

end
end

static scoping⇒ y = 1
dynamic scoping⇒ y = 2

4 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extending the Syntax

Outline of Lecture 13

Extension by Blocks and Procedures

Extending the Syntax

New Semantic Domains

Execution Relation

5 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extending the Syntax

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p ::= proc P is c end;p | ε ∈ PDec
v ::= var x;v | ε ∈ VDec
c ::= skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end |

call P | begin v p c end ∈ Cmd

• All used variable/procedure identifiers have to be declared
• Identifiers declared within a block must be distinct

6 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extending the Syntax

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p ::= proc P is c end;p | ε ∈ PDec
v ::= var x;v | ε ∈ VDec
c ::= skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end |

call P | begin v p c end ∈ Cmd

• All used variable/procedure identifiers have to be declared
• Identifiers declared within a block must be distinct

6 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Extending the Syntax

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p ::= proc P is c end;p | ε ∈ PDec
v ::= var x;v | ε ∈ VDec
c ::= skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end |

call P | begin v p c end ∈ Cmd

• All used variable/procedure identifiers have to be declared
• Identifiers declared within a block must be distinct

6 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

New Semantic Domains

Outline of Lecture 13

Extension by Blocks and Procedures

Extending the Syntax

New Semantic Domains

Execution Relation

7 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

New Semantic Domains

Locations and Stores

• So far: states Σ = {σ | σ : Var → Z}

• Now: explicit control over all (nested) instances of a variable:
– variable environments VEnv := {ρ | ρ : Var 99K Loc}

(partial function to maintain declaredness information)
– locations Loc := N
– stores Sto := {σ | σ : Loc 99K Z}

(partial function to maintain allocation information)
⇒ Two-level access to a variable x ∈ Var :

1. determine current memory location of x :
l := ρ(x)

2. reading/writing access to σ at position l

• Thus: previous state information represented as σ ◦ ρ

8 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

New Semantic Domains

Locations and Stores

• So far: states Σ = {σ | σ : Var → Z}
• Now: explicit control over all (nested) instances of a variable:

– variable environments VEnv := {ρ | ρ : Var 99K Loc}
(partial function to maintain declaredness information)

– locations Loc := N
– stores Sto := {σ | σ : Loc 99K Z}

(partial function to maintain allocation information)

⇒ Two-level access to a variable x ∈ Var :
1. determine current memory location of x :

l := ρ(x)

2. reading/writing access to σ at position l

• Thus: previous state information represented as σ ◦ ρ

8 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

New Semantic Domains

Locations and Stores

• So far: states Σ = {σ | σ : Var → Z}
• Now: explicit control over all (nested) instances of a variable:

– variable environments VEnv := {ρ | ρ : Var 99K Loc}
(partial function to maintain declaredness information)

– locations Loc := N
– stores Sto := {σ | σ : Loc 99K Z}

(partial function to maintain allocation information)
⇒ Two-level access to a variable x ∈ Var :

1. determine current memory location of x :
l := ρ(x)

2. reading/writing access to σ at position l

• Thus: previous state information represented as σ ◦ ρ

8 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

New Semantic Domains

Procedure Environments and Declarations

• Effect of procedure call determined by its body and variable and procedure environment of
its declaration:

PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}
denotes the set of procedure environments

• Effect of declaration: update of environment (and store)

updvJ.K : VDec × VEnv × Sto→ VEnv × Sto
updvJvar x;vK(ρ, σ) := updvJvK(ρ[x 7→ lx], σ[lx 7→ 0])

updvJεK(ρ, σ) := (ρ, σ)

updpJ.K : PDec × VEnv × PEnv → PEnv
updpJproc P is c end;pK(ρ, π) := updpJpK(ρ, π[P 7→ (c, ρ, π)])

updpJεK(ρ, π) := π

where lx := min{l ∈ Loc | σ(l) = ⊥}

9 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

New Semantic Domains

Procedure Environments and Declarations

• Effect of procedure call determined by its body and variable and procedure environment of
its declaration:

PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}
denotes the set of procedure environments
• Effect of declaration: update of environment (and store)

updvJ.K : VDec × VEnv × Sto→ VEnv × Sto
updvJvar x;vK(ρ, σ) := updvJvK(ρ[x 7→ lx], σ[lx 7→ 0])

updvJεK(ρ, σ) := (ρ, σ)

updpJ.K : PDec × VEnv × PEnv → PEnv
updpJproc P is c end;pK(ρ, π) := updpJpK(ρ, π[P 7→ (c, ρ, π)])

updpJεK(ρ, π) := π

where lx := min{l ∈ Loc | σ(l) = ⊥}

9 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Execution Relation

Outline of Lecture 13

Extension by Blocks and Procedures

Extending the Syntax

New Semantic Domains

Execution Relation

10 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Execution Relation

Execution Relation I

Definition 13.2 (Execution relation)

For c ∈ Cmd , σ, σ′ ∈ Sto, ρ ∈ VEnv , and π ∈ PEnv , the execution relation
(ρ, π) ` 〈c, σ〉 → σ′ (“in environment (ρ, π), statement c transforms store σ into σ′”)
is defined by the following rules:

(skip)

(ρ, π) ` 〈skip, σ〉 → σ

(asgn)

〈a, σ ◦ ρ〉 → z

(ρ, π) ` 〈x := a, σ〉 → σ[ρ(x) 7→ z]

(seq)

(ρ, π) ` 〈c1, σ〉 → σ′ (ρ, π) ` 〈c2, σ
′〉 → σ′′

(ρ, π) ` 〈c1;c2, σ〉 → σ′′

(if-t)

〈b, σ ◦ ρ〉 → true (ρ, π) ` 〈c1, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2 end, σ〉 → σ′

11 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Execution Relation

Execution Relation II

Definition 13.2 (Execution relation; continued)

(if-f)

〈b, σ ◦ ρ〉 → false (ρ, π) ` 〈c2, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2 end, σ〉 → σ′

(wh-f)

〈b, σ ◦ ρ〉 → false

(ρ, π) ` 〈while b do c end, σ〉 → σ

(wh-t)

〈b, σ ◦ ρ〉→ true (ρ, π)`〈c, σ〉→σ′ (ρ, π)`〈while b do c end, σ′〉→σ′′

(ρ, π) ` 〈while b do c end, σ〉 → σ′′

(call)

(ρ′, π′[P 7→ (c, ρ′, π′)]) ` 〈c, σ〉 → σ′

(ρ, π) ` 〈call P, σ〉 → σ′
if π(P) = (c, ρ′, π′)

(block)

updvJvK(ρ, σ) = (ρ′, σ′) (ρ′, updpJpK(ρ′, π)) ` 〈c, σ′〉 → σ′′

(ρ, π) ` 〈begin v p c end, σ〉 → σ′′

12 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Execution Relation

Execution Relation III

Remarks about rules (call) and (block):
• Static scoping is modelled in (call) by using the environments ρ′ and π′ (as determined in

(block)) from the declaration site of procedure P (and not ρ and π from the calling site)
• In (call), the procedure environment associated with procedure P is extended by a P-entry

to handle recursive calls of P:
π′[P 7→ (c, ρ′, π′)]

13 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

Execution Relation

Execution Relation IV

Example 13.3
begin
var x; var y; } v
proc F is
begin
var z;
z:=x;
if z=1 then skip

else x:=x-1; call F; y:=z*y end } c2

}
c1

end

cF

end;

p

x:=2; y:=1; call F } c0
end

c

Let σ∅(l) = ρ∅(x) = π∅(P) = ⊥ for all l ∈ Loc, x ∈ Var ,P ∈ PVar
Notation: σijkl ⇔ σ(0) = i, σ(1) = j, σ(2) = k , σ(3) = l
Derivation tree for (ρ∅, π∅) ` 〈c, σ∅〉 → σ1221: on the board

14 of 14 Semantics and Verification of Software
Summer Semester 2015
Lecture 13: Extension by Blocks and Procedures I (Operational Semantics)

	Extension by Blocks and Procedures
	Extending the Syntax
	New Semantic Domains
	Execution Relation

