

Semantics and Verification of Software

- **Summer Semester 2015**
- Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)
- Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties. Here $A[x \mapsto a]$ denotes the syntactic replacement of every occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

the Hoare rules. In (while), A is called a (loop) invariant.

Recap: Partial & Total Correctness Properties

Proving Total Correctness

Goal: syntactic derivation of valid total correctness properties

```
Definition (Hoare Logic for total correctness)
```

The Hoare rules for total correctness are given by (where $i \in LVar$)

A total correctness property is provable (notation: $\vdash \{A\} c \{ \Downarrow B\}$) if it is derivable by the Hoare rules. In case of (while), A(i) is called a (loop) invariant.

Operational and Denotational Equivalence

Definition 4.1: $\mathfrak{O}[\![.]\!]$: *Cmd* \to ($\Sigma \dashrightarrow \Sigma$) given by $\mathfrak{O}[\![c]\!]\sigma = \sigma' \iff \langle c, \sigma \rangle \to \sigma'$

Definition 4.2: Two statements $c_1, c_2 \in Cmd$ are operationally equivalent (notation: $c_1 \sim c_2$) if

 $\mathfrak{O}[\![c_1]\!] = \mathfrak{O}[\![c_2]\!]$

Theorem 8.5: For every $c \in Cmd$,

$$\mathfrak{O}[\![c]\!] = \mathfrak{C}[\![c]\!]$$

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if they are indistinguishable w.r.t. partial correctness properties:

Definition 12.1 (Axiomatic equivalence)

Two statements $c_1, c_2 \in Cmd$ are called axiomatically equivalent (notation: $c_1 \approx c_2$) if, for all assertions $A, B \in Assn$,

$$\models \{A\} c_1 \{B\} \quad \iff \quad \models \{A\} c_2 \{B\}.$$

Axiomatic Equivalence II

Example 12.2

We show that while $b \text{ do } c \text{ end} \approx \text{ if } b \text{ then } c;$ while b do c end else skip end(cf. Lemma 4.3). Let $A, B \in Assn$:

Characteristic Assertions I

The following results are based of the following encoding of states by assertions:

Definition 12.3

Given a finite subset of program variables $X \subseteq Var$ and a state $\sigma \in \Sigma$, the characteristic assertion of σ w.r.t. X is given by

$$State(\sigma, X) := \bigwedge_{x \in X} (x = \underbrace{\sigma(x)}_{\in \mathbb{Z}}) \in Assn$$

Moreover, we let $State(\sigma, \emptyset) :=$ true and $State(\bot, X) :=$ false.

Characteristic Assertions II

Programs and characteristic state assertions are obviously related in the following way:

Corollary 12.4

Let $c \in Cmd$, and let $FV(c) \subseteq Var$ denote the set of all variables occurring in c. Then, for every finite $X \supseteq FV(c)$ and $\sigma \in \Sigma$,

{State(σ , X)} c {State($\mathfrak{C}[\![\sigma]\!]\sigma$, X)}

Example 12.5 (Factorial program)

For $c := (y:=1; while \neg (x=1) do y:=y*x; x:=x-1 end), X = \{x, y\}, \sigma(x) = 3$, and $\sigma(y) = 0$, we obtain

$$\textit{State}(\sigma, X) = (x=3 \land y=0)$$

 $\textit{State}(\mathfrak{C}[\![\sigma]\!]\sigma, X) = (x=1 \land y=6)$

Partial vs. Total Equivalence

Now we can show that considering total rather than partial correctness properties yields the same notion of equivalence:

Theorem 12.6

Let $c_1, c_2 \in Cmd$. The following propositions are equivalent: 1. $\forall A, B \in Assn$: $\models \{A\} c_1 \{B\} \iff \models \{A\} c_2 \{B\}$ 2. $\forall A, B \in Assn$: $\models \{A\} c_1 \{\Downarrow B\} \iff \models \{A\} c_2 \{\Downarrow B\}$

Proof.

on the board

Axiomatic vs. Operational/Denotational Equivalence

Axiomatic vs. Operational/Denotational Equiv.

Theorem 12.7

Axiomatic and operational/denotational equivalence coincide, i.e., for all $c_1, c_2 \in Cmd$,

 $c_1 \approx c_2 \iff c_1 \sim c_2.$

Proof.

on the board

Summary: Axiomatic Semantics

Summary: Axiomatic Semantics

- Formalized by partial/total correctness properties
- Inductively defined by Hoare Logic proof rules
- Technically involved (especially loop invariants)
 - \Rightarrow machine support (proof assistants) indispensable for larger programs
- Equivalence of axiomatic and operational/denotational semantics
- Software engineering aspect: integrated development of program and proof (cf. assertions in Java)
- Systematic approach: mechanised program verification
 - 1. Start with (correctness) requirements for program
 - 2. Manually derive corresponding program annotations (assertions)
 - 3. Automatically derive corresponding verification conditions (using weakest preconditions etc.)
 - 4. Automatically discharge/simplify verification conditions using theorem prover
 - 5. Manually complete proof if required
 - (cf. Mike Gordon: Background reading on Hoare Logic, Chapter 3,

www.cl.cam.ac.uk/~mjcg/Teaching/2011/Hoare/Notes/Notes.pdf)

