
Semantics and Verification of Software
Summer Semester 2015

Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Recap: Hoare Logic

Outline of Lecture 11

Recap: Hoare Logic

Total Correctness

Soundness and Completeness of Hoare Logic for Total Correctness

2 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Recap: Hoare Logic

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties.
Here A[x 7→ a] denotes the syntactic replacement of every
occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]} x:=a {A}

(seq)

{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

(if)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 end {B}

(while)

{A ∧ b} c {A}
{A} while b do c end {A ∧ ¬b}

(cons)

|= (A⇒ A′) {A′} c {B′} |= (B′ ⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it is derivable by
the Hoare rules. In (while), A is called a (loop) invariant.

3 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Recap: Hoare Logic

Soundness of Hoare Logic

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
` {A} c {B} ⇒ |= {A} c {B}.

Proof.

Let ` {A} c {B}. By induction over the structure of the corresponding proof tree we
show that, for every σ ∈ Σ and I ∈ Int such that σ |=I A, CJcKσ |=I B (on the board).
(If σ = ⊥, then CJcKσ = ⊥ |=I B holds trivially.)

4 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Recap: Hoare Logic

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable X
Completeness: all valid partial correctness properties are systematically derivable

Theorem (Gödel’s Incompleteness Theorem)

The set of all valid assertions

{A ∈ Assn | |= A}
is not recursively enumerable, i.e., there exists no proof
system for Assn in which all valid assertions are
systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]
Kurt Gödel
(1906–1978)

5 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Recap: Hoare Logic

Incompleteness of Hoare Logic II

Corollary

There is no proof system in which all valid partial correctness properties can be
enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus the
enumerability of all valid partial correctness properties would imply the enumerability
of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But the set of all
non-terminating WHILE statements is not enumerable.

6 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Recap: Hoare Logic

Relative Completeness of Hoare Logic II

Theorem (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial
correctness property {A} c {B}:

|= {A} c {B} ⇒ ` {A} c {B}.

Stephen A. Cook (* 1939)

Thus: if we know that a partial correctness property is valid, then we know that there
is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {A} c1;c2 {B} has to be
derived. This requires an intermediate assertion C ∈ Assn such that {A} c1 {C} and
{C} c2 {B}. How to find it?

7 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Outline of Lecture 11

Recap: Hoare Logic

Total Correctness

Soundness and Completeness of Hoare Logic for Total Correctness

8 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Total Correctness

• Observation: partial correctness properties only speak about terminating computations of
a given program

• Total correctness additionally requires the proof that the program indeed stops (on the input
states admitted by the precondition)
• Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn
• Interpretation:

Validity of property {A} c {⇓B}
For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

9 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Total Correctness

• Observation: partial correctness properties only speak about terminating computations of
a given program
• Total correctness additionally requires the proof that the program indeed stops (on the input

states admitted by the precondition)

• Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn
• Interpretation:

Validity of property {A} c {⇓B}
For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

9 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Total Correctness

• Observation: partial correctness properties only speak about terminating computations of
a given program
• Total correctness additionally requires the proof that the program indeed stops (on the input

states admitted by the precondition)
• Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn

• Interpretation:

Validity of property {A} c {⇓B}
For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

9 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Total Correctness

• Observation: partial correctness properties only speak about terminating computations of
a given program
• Total correctness additionally requires the proof that the program indeed stops (on the input

states admitted by the precondition)
• Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn
• Interpretation:

Validity of property {A} c {⇓B}
For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

9 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Semantics of Total Correctness Properties

Definition 11.1 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .
• {A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation: σ |=I {A} c {⇓B}) if σ |=I A

implies that CJcKσ 6= ⊥ and CJcKσ |=I B.

• {A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if σ |=I {A} c {⇓B} for every
σ ∈ Σ.
• {A} c {⇓B} is called valid (notation: |= {A} c {⇓B}) if |=I {A} c {⇓B} for every I ∈ Int .

Obviously, total implies partial correctness (but not vice versa):

Corollary 11.2

For all A,B ∈ Assn and c ∈ Cmd,

|= {A} c {⇓B} ⇒ |= {A} c {B}.

10 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Semantics of Total Correctness Properties

Definition 11.1 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .
• {A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation: σ |=I {A} c {⇓B}) if σ |=I A

implies that CJcKσ 6= ⊥ and CJcKσ |=I B.
• {A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if σ |=I {A} c {⇓B} for every
σ ∈ Σ.

• {A} c {⇓B} is called valid (notation: |= {A} c {⇓B}) if |=I {A} c {⇓B} for every I ∈ Int .

Obviously, total implies partial correctness (but not vice versa):

Corollary 11.2

For all A,B ∈ Assn and c ∈ Cmd,

|= {A} c {⇓B} ⇒ |= {A} c {B}.

10 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Semantics of Total Correctness Properties

Definition 11.1 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .
• {A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation: σ |=I {A} c {⇓B}) if σ |=I A

implies that CJcKσ 6= ⊥ and CJcKσ |=I B.
• {A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if σ |=I {A} c {⇓B} for every
σ ∈ Σ.
• {A} c {⇓B} is called valid (notation: |= {A} c {⇓B}) if |=I {A} c {⇓B} for every I ∈ Int .

Obviously, total implies partial correctness (but not vice versa):

Corollary 11.2

For all A,B ∈ Assn and c ∈ Cmd,

|= {A} c {⇓B} ⇒ |= {A} c {B}.

10 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Semantics of Total Correctness Properties

Definition 11.1 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .
• {A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation: σ |=I {A} c {⇓B}) if σ |=I A

implies that CJcKσ 6= ⊥ and CJcKσ |=I B.
• {A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if σ |=I {A} c {⇓B} for every
σ ∈ Σ.
• {A} c {⇓B} is called valid (notation: |= {A} c {⇓B}) if |=I {A} c {⇓B} for every I ∈ Int .

Obviously, total implies partial correctness (but not vice versa):

Corollary 11.2

For all A,B ∈ Assn and c ∈ Cmd,

|= {A} c {⇓B} ⇒ |= {A} c {B}.

10 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 11.3 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by (where i ∈ LVar)

(skip)

{A} skip {⇓A}
(asgn)

{A[x 7→ a]} x := a {⇓A}

(seq)

{A} c1 {⇓C} {C} c2 {⇓B}
{A} c1;c2 {⇓B}

(if)

{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}
{A} if b then c1 else c2 end {⇓B}

(while)

|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i.i ≥ 0 ∧ A(i)} while b do c end {⇓A(0)}

(cons)

|= (A⇒ A′) {A′} c {⇓B′} |= (B′ ⇒ B)

{A} c {⇓B}
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is derivable by
the Hoare rules. In case of (while), A(i) is called a (loop) invariant.

11 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Proving Total Correctness II

• In rule

(while)

|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i.i ≥ 0 ∧ A(i)} while b do c end {⇓A(0)}
the notation A(i) indicates that assertion A parametrically depends on the value of the
logical variable i ∈ LVar .

• Idea: i represents the remaining number of loop iterations
• Loop to be traversed i + 1 times (i ≥ 0)
⇒ A(i + 1) holds
⇒ execution condition b satisfied

Thus: |= (i ≥ 0 ∧ A(i + 1)⇒ b), and i + 1 decreased to i after execution of c
• Execution terminated
⇒ A(0) holds
⇒ execution condition b violated

Thus: |= (A(0)⇒ ¬b)

12 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Proving Total Correctness II

• In rule

(while)

|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i.i ≥ 0 ∧ A(i)} while b do c end {⇓A(0)}
the notation A(i) indicates that assertion A parametrically depends on the value of the
logical variable i ∈ LVar .
• Idea: i represents the remaining number of loop iterations

• Loop to be traversed i + 1 times (i ≥ 0)
⇒ A(i + 1) holds
⇒ execution condition b satisfied

Thus: |= (i ≥ 0 ∧ A(i + 1)⇒ b), and i + 1 decreased to i after execution of c
• Execution terminated
⇒ A(0) holds
⇒ execution condition b violated

Thus: |= (A(0)⇒ ¬b)

12 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Proving Total Correctness II

• In rule

(while)

|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i.i ≥ 0 ∧ A(i)} while b do c end {⇓A(0)}
the notation A(i) indicates that assertion A parametrically depends on the value of the
logical variable i ∈ LVar .
• Idea: i represents the remaining number of loop iterations
• Loop to be traversed i + 1 times (i ≥ 0)
⇒ A(i + 1) holds
⇒ execution condition b satisfied

Thus: |= (i ≥ 0 ∧ A(i + 1)⇒ b), and i + 1 decreased to i after execution of c

• Execution terminated
⇒ A(0) holds
⇒ execution condition b violated

Thus: |= (A(0)⇒ ¬b)

12 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Proving Total Correctness II

• In rule

(while)

|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i.i ≥ 0 ∧ A(i)} while b do c end {⇓A(0)}
the notation A(i) indicates that assertion A parametrically depends on the value of the
logical variable i ∈ LVar .
• Idea: i represents the remaining number of loop iterations
• Loop to be traversed i + 1 times (i ≥ 0)
⇒ A(i + 1) holds
⇒ execution condition b satisfied

Thus: |= (i ≥ 0 ∧ A(i + 1)⇒ b), and i + 1 decreased to i after execution of c
• Execution terminated
⇒ A(0) holds
⇒ execution condition b violated

Thus: |= (A(0)⇒ ¬b)

12 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Total Correctness of Factorial Program I

Example 11.4

Proof of {A} y:=1;c {⇓B} where
A := (x > 0 ∧ x = i)
c := while ¬(x=1) do y:=y*x; x:=x-1 end
B := (y = i!)

First we show that the assertion C(j) = (x > 0 ∧ y ∗ x! = i! ∧ x = j + 1) is an
invariant of c. Applying (asgn) twice yields
` {j ≥ 0 ∧ C(j)[x 7→ x-1]} x:=x-1 {⇓ j ≥ 0 ∧ C(j)} and
` {j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x]} y:=y*x {⇓ j ≥ 0 ∧ C(j)[x 7→ x-1]}

such that (seq) implies
` {j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x]} y:=y*x; x:=x-1 {⇓ j ≥ 0 ∧ C(j)}.

Now C(j + 1) = (x > 0 ∧ y*x! = i! ∧ x = j + 2) and
C(j)[x 7→ x-1][y 7→ y*x] = (x− 1 > 0 ∧ y ∗ x ∗ (x− 1)! = i! ∧ x− 1 = j + 1)
such that

|= ((j ≥ 0 ∧ C(j + 1))⇒ (j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x])) and
|= ((j ≥ 0 ∧ C(j))⇒ C(j)).

13 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Total Correctness of Factorial Program I

Example 11.4

Proof of {A} y:=1;c {⇓B} where
A := (x > 0 ∧ x = i)
c := while ¬(x=1) do y:=y*x; x:=x-1 end
B := (y = i!)

First we show that the assertion C(j) = (x > 0 ∧ y ∗ x! = i! ∧ x = j + 1) is an
invariant of c. Applying (asgn) twice yields
` {j ≥ 0 ∧ C(j)[x 7→ x-1]} x:=x-1 {⇓ j ≥ 0 ∧ C(j)} and
` {j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x]} y:=y*x {⇓ j ≥ 0 ∧ C(j)[x 7→ x-1]}

such that (seq) implies
` {j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x]} y:=y*x; x:=x-1 {⇓ j ≥ 0 ∧ C(j)}.

Now C(j + 1) = (x > 0 ∧ y*x! = i! ∧ x = j + 2) and
C(j)[x 7→ x-1][y 7→ y*x] = (x− 1 > 0 ∧ y ∗ x ∗ (x− 1)! = i! ∧ x− 1 = j + 1)
such that

|= ((j ≥ 0 ∧ C(j + 1))⇒ (j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x])) and
|= ((j ≥ 0 ∧ C(j))⇒ C(j)).

13 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Total Correctness of Factorial Program I

Example 11.4

Proof of {A} y:=1;c {⇓B} where
A := (x > 0 ∧ x = i)
c := while ¬(x=1) do y:=y*x; x:=x-1 end
B := (y = i!)

First we show that the assertion C(j) = (x > 0 ∧ y ∗ x! = i! ∧ x = j + 1) is an
invariant of c. Applying (asgn) twice yields
` {j ≥ 0 ∧ C(j)[x 7→ x-1]} x:=x-1 {⇓ j ≥ 0 ∧ C(j)} and
` {j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x]} y:=y*x {⇓ j ≥ 0 ∧ C(j)[x 7→ x-1]}

such that (seq) implies
` {j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x]} y:=y*x; x:=x-1 {⇓ j ≥ 0 ∧ C(j)}.

Now C(j + 1) = (x > 0 ∧ y*x! = i! ∧ x = j + 2) and
C(j)[x 7→ x-1][y 7→ y*x] = (x− 1 > 0 ∧ y ∗ x ∗ (x− 1)! = i! ∧ x− 1 = j + 1)
such that

|= ((j ≥ 0 ∧ C(j + 1))⇒ (j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x])) and
|= ((j ≥ 0 ∧ C(j))⇒ C(j)).

13 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Total Correctness of Factorial Program II

Example 11.4 (continued)

Hence (cons) implies
` {j ≥ 0 ∧ C(j + 1)} y:=y*x; x:=x-1 {⇓C(j)}.

Moreover we have
|= ((j ≥ 0 ∧ C(j + 1))⇒ ¬(x = 1)) and |= (C(0)⇒ ¬(¬(x = 1)))

such that (while) yields
` {∃j.j ≥ 0 ∧ C(j)} c {⇓C(0)}.

For the initializing assignment, (asgn) implies
` {∃j.j ≥ 0 ∧ C(j)[y 7→ 1]} y:=1 {⇓∃j.j ≥ 0 ∧ C(j)},

such that (seq) allows to conclude
` {∃j.j ≥ 0 ∧ C(j)[y 7→ 1]} y:=1;c {⇓C(0)}.

On the other hand we have (choose j := i − 1):
|= ((x > 0 ∧ x = i)⇒ (∃j.j ≥ 0 ∧ C(j)[y 7→ 1])) and |= (C(0)⇒ y = i!)

such that (cons) yields the desired result:
` {x > 0 ∧ x = i} y:=1;c {⇓y = i!}.

14 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Total Correctness of Factorial Program II

Example 11.4 (continued)

Hence (cons) implies
` {j ≥ 0 ∧ C(j + 1)} y:=y*x; x:=x-1 {⇓C(j)}.

Moreover we have
|= ((j ≥ 0 ∧ C(j + 1))⇒ ¬(x = 1)) and |= (C(0)⇒ ¬(¬(x = 1)))

such that (while) yields
` {∃j.j ≥ 0 ∧ C(j)} c {⇓C(0)}.

For the initializing assignment, (asgn) implies
` {∃j.j ≥ 0 ∧ C(j)[y 7→ 1]} y:=1 {⇓∃j.j ≥ 0 ∧ C(j)},

such that (seq) allows to conclude
` {∃j.j ≥ 0 ∧ C(j)[y 7→ 1]} y:=1;c {⇓C(0)}.

On the other hand we have (choose j := i − 1):
|= ((x > 0 ∧ x = i)⇒ (∃j.j ≥ 0 ∧ C(j)[y 7→ 1])) and |= (C(0)⇒ y = i!)

such that (cons) yields the desired result:
` {x > 0 ∧ x = i} y:=1;c {⇓y = i!}.

14 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Total Correctness of Factorial Program II

Example 11.4 (continued)

Hence (cons) implies
` {j ≥ 0 ∧ C(j + 1)} y:=y*x; x:=x-1 {⇓C(j)}.

Moreover we have
|= ((j ≥ 0 ∧ C(j + 1))⇒ ¬(x = 1)) and |= (C(0)⇒ ¬(¬(x = 1)))

such that (while) yields
` {∃j.j ≥ 0 ∧ C(j)} c {⇓C(0)}.

For the initializing assignment, (asgn) implies
` {∃j.j ≥ 0 ∧ C(j)[y 7→ 1]} y:=1 {⇓∃j.j ≥ 0 ∧ C(j)},

such that (seq) allows to conclude
` {∃j.j ≥ 0 ∧ C(j)[y 7→ 1]} y:=1;c {⇓C(0)}.

On the other hand we have (choose j := i − 1):
|= ((x > 0 ∧ x = i)⇒ (∃j.j ≥ 0 ∧ C(j)[y 7→ 1])) and |= (C(0)⇒ y = i!)

such that (cons) yields the desired result:
` {x > 0 ∧ x = i} y:=1;c {⇓y = i!}.

14 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Total Correctness

Total Correctness of Factorial Program II

Example 11.4 (continued)

Hence (cons) implies
` {j ≥ 0 ∧ C(j + 1)} y:=y*x; x:=x-1 {⇓C(j)}.

Moreover we have
|= ((j ≥ 0 ∧ C(j + 1))⇒ ¬(x = 1)) and |= (C(0)⇒ ¬(¬(x = 1)))

such that (while) yields
` {∃j.j ≥ 0 ∧ C(j)} c {⇓C(0)}.

For the initializing assignment, (asgn) implies
` {∃j.j ≥ 0 ∧ C(j)[y 7→ 1]} y:=1 {⇓∃j.j ≥ 0 ∧ C(j)},

such that (seq) allows to conclude
` {∃j.j ≥ 0 ∧ C(j)[y 7→ 1]} y:=1;c {⇓C(0)}.

On the other hand we have (choose j := i − 1):
|= ((x > 0 ∧ x = i)⇒ (∃j.j ≥ 0 ∧ C(j)[y 7→ 1])) and |= (C(0)⇒ y = i!)

such that (cons) yields the desired result:
` {x > 0 ∧ x = i} y:=1;c {⇓y = i!}.

14 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Soundness and Completeness of Hoare Logic for Total Correctness

Outline of Lecture 11

Recap: Hoare Logic

Total Correctness

Soundness and Completeness of Hoare Logic for Total Correctness

15 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Soundness and Completeness of Hoare Logic for Total Correctness

Soundness

In analogy to Theorem 10.2 we can show that the Hoare Logic for total correctness
properties is also sound:

Theorem 11.5 (Soundness)

For every total correctness property {A} c {⇓B},
` {A} c {⇓B} ⇒ |= {A} c {⇓B}.

Proof.

again by structural induction over the derivation tree of ` {A} c {⇓B}
(here only (while) case; on the board)

16 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Soundness and Completeness of Hoare Logic for Total Correctness

Soundness

In analogy to Theorem 10.2 we can show that the Hoare Logic for total correctness
properties is also sound:

Theorem 11.5 (Soundness)

For every total correctness property {A} c {⇓B},
` {A} c {⇓B} ⇒ |= {A} c {⇓B}.

Proof.

again by structural induction over the derivation tree of ` {A} c {⇓B}
(here only (while) case; on the board)

16 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

Soundness and Completeness of Hoare Logic for Total Correctness

Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 10.5 applies:

Theorem 11.6 (Completeness)

The Hoare Logic for total correctness properties is relatively complete, i.e., for every
{A} c {⇓B}:

|= {A} c {⇓B} ⇒ ` {A} c {⇓B}.

Proof.

omitted

17 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 11: Axiomatic Semantics of WHILE III (Total Correctness)

	Recap: Hoare Logic
	Total Correctness
	Soundness and Completeness of Hoare Logic for Total Correctness

