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Recap: Hoare Logic

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties.
Here A[x 7→ a] denotes the syntactic replacement of every
occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]} x:=a {A}

(seq)

{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

(if)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 end {B}

(while)

{A ∧ b} c {A}
{A} while b do c end {A ∧ ¬b}

(cons)

|= (A⇒ A′) {A′} c {B′} |= (B′ ⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it is derivable by
the Hoare rules. In (while), A is called a (loop) invariant.
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Recap: Hoare Logic

Soundness of Hoare Logic

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
` {A} c {B} ⇒ |= {A} c {B}.

Proof.

Let ` {A} c {B}. By induction over the structure of the corresponding proof tree we
show that, for every σ ∈ Σ and I ∈ Int such that σ |=I A, CJcKσ |=I B (on the board).
(If σ = ⊥, then CJcKσ = ⊥ |=I B holds trivially.)
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Recap: Hoare Logic

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable X
Completeness: all valid partial correctness properties are systematically derivable  

Theorem (Gödel’s Incompleteness Theorem)

The set of all valid assertions

{A ∈ Assn | |= A}
is not recursively enumerable, i.e., there exists no proof
system for Assn in which all valid assertions are
systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]
Kurt Gödel
(1906–1978)
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Recap: Hoare Logic

Incompleteness of Hoare Logic II

Corollary

There is no proof system in which all valid partial correctness properties can be
enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus the
enumerability of all valid partial correctness properties would imply the enumerability
of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But the set of all
non-terminating WHILE statements is not enumerable.
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Recap: Hoare Logic

Relative Completeness of Hoare Logic II

Theorem (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial
correctness property {A} c {B}:

|= {A} c {B} ⇒ ` {A} c {B}.

Stephen A. Cook (* 1939)

Thus: if we know that a partial correctness property is valid, then we know that there
is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {A} c1;c2 {B} has to be
derived. This requires an intermediate assertion C ∈ Assn such that {A} c1 {C} and
{C} c2 {B}. How to find it?
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Total Correctness
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Total Correctness

Total Correctness

• Observation: partial correctness properties only speak about terminating computations of
a given program

• Total correctness additionally requires the proof that the program indeed stops (on the input
states admitted by the precondition)
• Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn
• Interpretation:

Validity of property {A} c {⇓B}
For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.
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Total Correctness

Semantics of Total Correctness Properties

Definition 11.1 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .
• {A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation: σ |=I {A} c {⇓B}) if σ |=I A

implies that CJcKσ 6= ⊥ and CJcKσ |=I B.

• {A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if σ |=I {A} c {⇓B} for every
σ ∈ Σ.
• {A} c {⇓B} is called valid (notation: |= {A} c {⇓B}) if |=I {A} c {⇓B} for every I ∈ Int .

Obviously, total implies partial correctness (but not vice versa):

Corollary 11.2

For all A,B ∈ Assn and c ∈ Cmd,

|= {A} c {⇓B} ⇒ |= {A} c {B}.
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Total Correctness

Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 11.3 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by (where i ∈ LVar )

(skip)

{A} skip {⇓A}
(asgn)

{A[x 7→ a]} x := a {⇓A}

(seq)

{A} c1 {⇓C} {C} c2 {⇓B}
{A} c1;c2 {⇓B}

(if)

{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}
{A} if b then c1 else c2 end {⇓B}

(while)

|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i.i ≥ 0 ∧ A(i)} while b do c end {⇓A(0)}

(cons)

|= (A⇒ A′) {A′} c {⇓B′} |= (B′ ⇒ B)

{A} c {⇓B}
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is derivable by
the Hoare rules. In case of (while), A(i) is called a (loop) invariant.
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Total Correctness

Proving Total Correctness II

• In rule

(while)

|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i.i ≥ 0 ∧ A(i)} while b do c end {⇓A(0)}
the notation A(i) indicates that assertion A parametrically depends on the value of the
logical variable i ∈ LVar .

• Idea: i represents the remaining number of loop iterations
• Loop to be traversed i + 1 times (i ≥ 0)
⇒ A(i + 1) holds
⇒ execution condition b satisfied

Thus: |= (i ≥ 0 ∧ A(i + 1)⇒ b), and i + 1 decreased to i after execution of c
• Execution terminated
⇒ A(0) holds
⇒ execution condition b violated

Thus: |= (A(0)⇒ ¬b)
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Total Correctness

Total Correctness of Factorial Program I

Example 11.4

Proof of {A} y:=1;c {⇓B} where
A := (x > 0 ∧ x = i)
c := while ¬(x=1) do y:=y*x; x:=x-1 end
B := (y = i!)

First we show that the assertion C(j) = (x > 0 ∧ y ∗ x! = i! ∧ x = j + 1) is an
invariant of c. Applying (asgn) twice yields
` {j ≥ 0 ∧ C(j)[x 7→ x-1]} x:=x-1 {⇓ j ≥ 0 ∧ C(j)} and
` {j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x]} y:=y*x {⇓ j ≥ 0 ∧ C(j)[x 7→ x-1]}

such that (seq) implies
` {j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x]} y:=y*x; x:=x-1 {⇓ j ≥ 0 ∧ C(j)}.

Now C(j + 1) = (x > 0 ∧ y*x! = i! ∧ x = j + 2) and
C(j)[x 7→ x-1][y 7→ y*x] = (x− 1 > 0 ∧ y ∗ x ∗ (x− 1)! = i! ∧ x− 1 = j + 1)
such that

|= ((j ≥ 0 ∧ C(j + 1))⇒ (j ≥ 0 ∧ C(j)[x 7→ x-1][y 7→ y*x])) and
|= ((j ≥ 0 ∧ C(j))⇒ C(j)).
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Total Correctness

Total Correctness of Factorial Program II

Example 11.4 (continued)

Hence (cons) implies
` {j ≥ 0 ∧ C(j + 1)} y:=y*x; x:=x-1 {⇓C(j)}.

Moreover we have
|= ((j ≥ 0 ∧ C(j + 1))⇒ ¬(x = 1)) and |= (C(0)⇒ ¬(¬(x = 1)))

such that (while) yields
` {∃j.j ≥ 0 ∧ C(j)} c {⇓C(0)}.

For the initializing assignment, (asgn) implies
` {∃j.j ≥ 0 ∧ C(j)[y 7→ 1]} y:=1 {⇓∃j.j ≥ 0 ∧ C(j)},

such that (seq) allows to conclude
` {∃j.j ≥ 0 ∧ C(j)[y 7→ 1]} y:=1;c {⇓C(0)}.

On the other hand we have (choose j := i − 1):
|= ((x > 0 ∧ x = i)⇒ (∃j.j ≥ 0 ∧ C(j)[y 7→ 1])) and |= (C(0)⇒ y = i!)

such that (cons) yields the desired result:
` {x > 0 ∧ x = i} y:=1;c {⇓y = i!}.
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Soundness and Completeness of Hoare Logic for Total Correctness

Soundness

In analogy to Theorem 10.2 we can show that the Hoare Logic for total correctness
properties is also sound:

Theorem 11.5 (Soundness)

For every total correctness property {A} c {⇓B},
` {A} c {⇓B} ⇒ |= {A} c {⇓B}.

Proof.

again by structural induction over the derivation tree of ` {A} c {⇓B}
(here only (while) case; on the board)
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Soundness and Completeness of Hoare Logic for Total Correctness

Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 10.5 applies:

Theorem 11.6 (Completeness)

The Hoare Logic for total correctness properties is relatively complete, i.e., for every
{A} c {⇓B}:

|= {A} c {⇓B} ⇒ ` {A} c {⇓B}.

Proof.

omitted
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