

Semantics and Verification of Software

- Summer Semester 2015
- Lecture 10: Axiomatic Semantics of WHILE II (Soundness & Completeness)
- Thomas Noll Software Modeling and Verification Group RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Partial Correctness Properties

Validity of property $\{A\} c \{B\}$

{*A*} *c* {*B*} is valid iff for all states $\sigma \in \Sigma$ which satisfy *A*: if the execution of *c* in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies *B*.

Syntax of Assertion Language

Definition (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

 $a ::= z | x | i | a_1 + a_2 | a_1 - a_2 | a_1 * a_2 \in LExp$ $A ::= t | a_1 = a_2 | a_1 > a_2 | \neg A | A_1 \land A_2 | A_1 \lor A_2 | \forall i.A \in Assn$

- Thus: $AExp \subsetneq LExp$, $BExp \subsetneq Assn$
- The following (and other) abbreviations will be employed:

$$A_1 \Rightarrow A_2 := \neg A_1 \lor A_2$$

$$\exists i.A := \neg (\forall i. \neg A)$$

$$a_1 \ge a_2 := a_1 > a_2 \lor a_1 = a_2$$

$$\vdots$$

Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition (Semantics of LExp)

An interpretation is an element of the set $Int := \{I \mid I : LVar \to \mathbb{Z}\}$. The value of an arithmetic expressions with logical variables is given by the functional

$$\mathfrak{L}[\![.]\!]: LExp \to (Int \to (\Sigma \to \mathbb{Z}))$$

Definition 6.1 (denotational semantics of arithmetic expressions) implies:

Corollary

For every $a \in AExp$ (without logical variables), $I \in Int$, and $\sigma \in \Sigma$: $\mathfrak{L}[a] I\sigma = \mathfrak{A}[a]\sigma$.

Semantics of Assertions

Reminder: $A ::= t | a_1 = a_2 | a_1 > a_2 | \neg A | A_1 \land A_2 | A_1 \lor A_2 | \forall i.A \in Assn$

Definition (Semantics of assertions)

Let $A \in Assn$, $\sigma \in \Sigma_{\perp}$, and $I \in Int$. The relation " σ satisfies A in I" (notation: $\sigma \models^{I} A$) is inductively defined by:

$$\sigma \models' \text{ true}$$

$$\sigma \models' a_1 = a_2 \quad \text{if } \mathfrak{L}\llbracket a_1 \rrbracket I \sigma = \mathfrak{L}\llbracket a_2 \rrbracket I \sigma$$

$$\sigma \models' a_1 > a_2 \quad \text{if } \mathfrak{L}\llbracket a_1 \rrbracket I \sigma > \mathfrak{L}\llbracket a_2 \rrbracket I \sigma$$

$$\sigma \models' \neg A \quad \text{if not } \sigma \models' A$$

$$\sigma \models' A_1 \land A_2 \quad \text{if } \sigma \models' A_1 \text{ and } \sigma \models' A_2$$

$$\sigma \models' A_1 \lor A_2 \quad \text{if } \sigma \models' A_1 \text{ or } \sigma \models' A_2$$

$$\sigma \models' \forall i.A \quad \text{if } \sigma \models'^{[i \mapsto z]} A \text{ for every } z \in \mathbb{Z}$$

$$\bot \models' A$$

Furthermore σ satisfies A ($\sigma \models A$) if $\sigma \models^{I} A$ for every interpretation $I \in Int$, and A is called valid ($\models A$) if $\sigma \models A$ for every state $\sigma \in \Sigma$.

Partial Correctness Properties

Definition (Partial correctness properties)

Let $A, B \in Assn$ and $c \in Cmd$.

- An expression of the form {*A*} *c* {*B*} is called a partial correctness property with precondition *A* and postcondition *B*.
- Given $\sigma \in \Sigma_{\perp}$ and $I \in Int$, we let

$$\sigma \models' \{A\} c \{B\}$$

if $\sigma \models' A$ implies $\mathfrak{C}[\![c]\!] \sigma \models' B$ (or equivalently: $\sigma \in A' \Rightarrow \mathfrak{C}[\![c]\!] \sigma \in B'$).

- {A} c {B} is called valid in / (notation: ⊨' {A} c {B}) if σ ⊨' {A} c {B} for every σ ∈ Σ⊥ (or equivalently: 𝔅[[c]]A' ⊆ B').
- {*A*} c {*B*} is called valid (notation: \models {*A*} c {*B*}) if \models {*A*} c {*B*} for every $I \in Int$.

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties. Here $A[x \mapsto a]$ denotes the syntactic replacement of every occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

the Hoare rules. In (while), A is called a (loop) invariant.

Soundness of Hoare Logic I

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 10.1 (Substitution lemma)

For every $A \in Assn$, $x \in Var$, $a \in AExp$, $\sigma \in \Sigma$, and $I \in Int$:

$$\sigma \models' A[x \mapsto a] \iff \sigma[x \mapsto \mathfrak{A}[\![a]\!]\sigma] \models' A.$$

Proof.

by induction over *A* ∈ *Assn* (omitted)

 10 of 20
 Semantics and Verification of Software

 Summer Semester 2015
 Lecture 10: Axiomatic Semantics of WHILE II (Soundness & Completeness)

Soundness of Hoare Logic II

Theorem 10.2 (Soundness of Hoare Logic)

For every partial correctness property $\{A\} c \{B\}$,

$$\vdash \{A\} c \{B\} \quad \Rightarrow \quad \models \{A\} c \{B\}.$$

Proof.

Let $\vdash \{A\} \ c \{B\}$. By induction over the structure of the corresponding proof tree we show that, for every $\sigma \in \Sigma$ and $I \in Int$ such that $\sigma \models^{I} A$, $\mathfrak{C}[[c]] \sigma \models^{I} B$ (on the board). (If $\sigma = \bot$, then $\mathfrak{C}[[c]] \sigma = \bot \models^{I} B$ holds trivially.)

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable \checkmark Completeness: all valid partial correctness properties are systematically derivable \oint

Theorem 10.3 (Gödel's Incompleteness Theorem)

The set of all valid assertions

 $\{A \in Assn \mid \models A\}$

is not recursively enumerable, i.e., there exists no proof system for Assn in which all valid assertions are systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]

Kurt Gödel (1906–1978)

Incompleteness of Hoare Logic II

Corollary 10.4

There is no proof system in which all valid partial correctness properties can be enumerated.

Proof.

Given $A \in Assn$, $\models A$ is obviously equivalent to $\{true\} skip \{A\}$. Thus the enumerability of all valid partial correctness properties would imply the enumerability of all valid assertions.

Remark: alternative proof (using computability theory):

 $\{true\} c \{false\}$ is valid iff c does not terminate on any input state. But the set of all non-terminating WHILE statements is not enumerable.

Relative Completeness of Hoare Logic

Relative Completeness of Hoare Logic I

• We will see: actual reason of incompleteness is rule

$$(\text{cons}) \frac{\models (A \Rightarrow A') \quad \{A'\} c \{B'\} \quad \models (B' \Rightarrow B)}{\{A\} c \{B\}}$$

since it is based on the validity of implications within Assn

- The other language constructs are "enumerable"
- Therefore: separation of proof system (Hoare Logic) and assertion language (Assn)
- One can show: if an "oracle" is available which decides whether a given assertion is valid, then all valid partial correctness properties can be systematically derived
- \Rightarrow Relative completeness

Relative Completeness of Hoare Logic

Relative Completeness of Hoare Logic II

Theorem 10.5 (Cook's Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness property $\{A\} c \{B\}$: $\models \{A\} c \{B\} \implies \vdash \{A\} c \{B\}.$

Stephen A. Cook (* 1939)

Thus: if we know that a partial correctness property is valid, then we know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., $\{A\} c_1; c_2 \{B\}$ has to be derived. This requires an intermediate assertion $C \in Assn$ such that $\{A\} c_1 \{C\}$ and $\{C\} c_2 \{B\}$. How to find it?

Weakest Preconditions I

Definition 10.6 (Weakest precondition)

Given $c \in Cmd$, $B \in Assn$ and $I \in Int$, the weakest precondition of *B* with respect to *c* under *I* is defined by:

$$wp'\llbracket c, B
rbracket := \{\sigma \in \Sigma_{\perp} \mid \mathfrak{C}\llbracket c
rbracket \sigma \models' B\}.$$

Corollary 10.7

```
For every c \in Cmd, A, B \in Assn, and I \in Int:

1. \models' \{A\} c \{B\} \iff A' \subseteq wp' \llbracket c, B \rrbracket

2. If A_0 \in Assn such that A'_0 = wp' \llbracket c, B \rrbracket for every I \in Int, then

\models \{A\} c \{B\} \iff \models (A \Rightarrow A_0)
```

Remark: (2) justifies the notion of weakest precondition: it is implied by every precondition *A* which makes $\{A\} c \{B\}$ valid

Weakest Preconditions II

Definition 10.8 (Expressivity of assertion languages)

An assertion language *Assn* is called expressive if, for every $c \in Cmd$ and $B \in Assn$, there exists $A_{c,B} \in Assn$ such that $A_{c,B}^{I} = wp^{I}[[c, B]]$ for every $I \in Int$.

Theorem 10.9 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details]) Given $c \in Cmd$ and $B \in Assn$, construct $A_{c,B} \in Assn$ with $\sigma \models' A_{c,B} \iff \mathfrak{C}[\![c]\!]\sigma \models' B$ (for every $\sigma \in \Sigma_{\perp}$, $I \in Int$). For example: $A_{skip,B} := B$ $A_{x:=a,B} := B[x \mapsto a]$ $A_{c_1; c_2, B} := A_{c_1, A_{c_2, B}}$...

(for while: "Gödelization" of sequences of intermediate states)

Relative Completeness of Hoare Logic

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are "derivable":

Lemma 10.10

For every $c \in Cmd$ and $B \in Assn: \vdash \{A_{c,B}\} c \{B\}$

Proof.

by structural induction over *c* (omitted)

Proof (Cook's Completeness Theorem 10.5).

We have to show that Hoare Logic is relatively complete, i.e., that

 $\models \{A\} c \{B\} \quad \Rightarrow \quad \vdash \{A\} c \{B\}.$

• Lemma 10.10: ⊢ {*A*_{*c*,*B*}} *c* {*B*}

• Corollary 10.7:
$$\models \{A\} c \{B\} \Rightarrow \models (A \Rightarrow A_{c,B})$$

 $\models (A \Rightarrow A_{c,B}) \ \{A_{c,B}\} c \{B\} \models (B \Rightarrow B)$

{A} c {B}

• (cons)

20 of 20 Semantics and Verification of Software Summer Semester 2015 Lecture 10: Axiomatic Semantics of WHILE II (Soundness & Completeness)

