

Semantics and Verification of Software

Summer Semester 2015

Lecture 10: Axiomatic Semantics of WHILE II (Soundness & Completeness)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Outline of Lecture 10

Recap: Axiomatic Semantics of WHILE

Soundness of Hoare Logic

(In-)Completeness of Hoare Logic

Relative Completeness of Hoare Logic

Partial Correctness Properties

Validity of property $\{A\}$ c $\{B\}$

 $\{A\}$ c $\{B\}$ is valid iff for all states $\sigma \in \Sigma$ which satisfy A: if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B.

Syntax of Assertion Language

Definition (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

$$a := z \mid x \mid i \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in LExp$$

 $A := t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \land A_2 \mid A_1 \lor A_2 \mid \forall i.A \in Assn$

- Thus: $AExp \subseteq LExp$, $BExp \subseteq Assn$
- The following (and other) abbreviations will be employed:

$$A_1 \Rightarrow A_2 := \neg A_1 \lor A_2$$

 $\exists i.A := \neg (\forall i. \neg A)$
 $a_1 \ge a_2 := a_1 > a_2 \lor a_1 = a_2$
 \vdots

Semantics of *LExp*

The semantics now additionally depends on values of logical variables:

Definition (Semantics of *LExp*)

An interpretation is an element of the set $Int := \{I \mid I : LVar \to \mathbb{Z}\}$. The value of an arithmetic expressions with logical variables is given by the functional

$$\mathfrak{L}[\![.]\!]: \mathit{LExp} o (\mathit{Int} o (\Sigma o \mathbb{Z}))$$

where
$$\mathfrak{L}[\![z]\!] I\sigma := z$$
 $\mathfrak{L}[\![a_1 + a_2]\!] I\sigma := \mathfrak{L}[\![a_1]\!] I\sigma + \mathfrak{L}[\![a_2]\!] I\sigma$ $\mathfrak{L}[\![x]\!] I\sigma := \sigma(x)$ $\mathfrak{L}[\![a_1 - a_2]\!] I\sigma := \mathfrak{L}[\![a_1]\!] I\sigma - \mathfrak{L}[\![a_2]\!] I\sigma$ $\mathfrak{L}[\![i]\!] I\sigma := I(i)$ $\mathfrak{L}[\![a_1 * a_2]\!] I\sigma := \mathfrak{L}[\![a_1]\!] I\sigma \cdot \mathfrak{L}[\![a_2]\!] I\sigma$

Definition 6.1 (denotational semantics of arithmetic expressions) implies:

Corollary

For every $a \in AExp$ (without logical variables), $I \in Int$, and $\sigma \in \Sigma$:

$$\mathfrak{L}[\![a]\!]I\sigma = \mathfrak{A}[\![a]\!]\sigma.$$

Semantics of Assertions

Reminder: $A := t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \land A_2 \mid A_1 \lor A_2 \mid \forall i.A \in Assn$

Definition (Semantics of assertions)

Let $A \in Assn$, $\sigma \in \Sigma_{\perp}$, and $I \in Int$. The relation " σ satisfies A in I" (notation: $\sigma \models^{I} A$) is inductively defined by:

$$\sigma \models' \text{true}$$

$$\sigma \models' a_1 = a_2 \quad \text{if } \mathfrak{L}\llbracket a_1 \rrbracket I \sigma = \mathfrak{L}\llbracket a_2 \rrbracket I \sigma$$

$$\sigma \models' a_1 > a_2 \quad \text{if } \mathfrak{L}\llbracket a_1 \rrbracket I \sigma > \mathfrak{L}\llbracket a_2 \rrbracket I \sigma$$

$$\sigma \models' \neg A \quad \text{if not } \sigma \models' A$$

$$\sigma \models' A_1 \land A_2 \quad \text{if } \sigma \models' A_1 \text{ and } \sigma \models' A_2$$

$$\sigma \models' A_1 \lor A_2 \quad \text{if } \sigma \models' A_1 \text{ or } \sigma \models' A_2$$

$$\sigma \models' \forall i.A \quad \text{if } \sigma \models'^{[i\mapsto z]} A \text{ for every } z \in \mathbb{Z}$$

$$\bot \models' A$$

Furthermore σ satisfies A ($\sigma \models A$) if $\sigma \models^I A$ for every interpretation $I \in Int$, and A is called valid ($\models A$) if $\sigma \models A$ for every state $\sigma \in \Sigma$.

Partial Correctness Properties

Definition (Partial correctness properties)

Let $A, B \in Assn$ and $c \in Cmd$.

- An expression of the form $\{A\}$ c $\{B\}$ is called a partial correctness property with precondition A and postcondition B.
- Given $\sigma \in \Sigma_{\perp}$ and $I \in Int$, we let

$$\sigma \models^{I} \{A\} c \{B\}$$

if $\sigma \models^{I} A$ implies $\mathfrak{C}[\![c]\!] \sigma \models^{I} B$ (or equivalently: $\sigma \in A^{I} \Rightarrow \mathfrak{C}[\![c]\!] \sigma \in B^{I}$).

- $\{A\}$ c $\{B\}$ is called valid in I (notation: $\models^I \{A\}$ c $\{B\}$) if $\sigma \models^I \{A\}$ c $\{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[\![c]\!]A^I \subseteq B^I$).
- $\{A\}$ c $\{B\}$ is called valid (notation: $\models \{A\}$ c $\{B\}$) if $\models^I \{A\}$ c $\{B\}$ for every $I \in Int$.

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties. Here $A[x \mapsto a]$ denotes the syntactic replacement of every occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by

$$\begin{array}{c} (\text{skip}) \overline{\{A\} \text{ skip } \{A\}} \\ (A) c_1 \{C\} \{C\} c_2 \{B\} \\ (A) c_1; c_2 \{B\} \\ (A \land b) c \{A\} \\ (A) \text{ while} \overline{\{A\} \text{ while } b \text{ do } c \text{ end } \{A \land \neg b\}} \end{array} \stackrel{\text{(asgn)}}{=} \begin{array}{c} (\text{asgn)} \overline{\{A\} \text{ skip } \{A\} \text{ b}} \\ (\text{if)} \overline{\{A\} \text{ if } a \text{ if$$

$$\begin{array}{c}
 \overline{\{A[x\mapsto a]\}\ x:=a\,\{A\}} \\
 \overline{\{A\land b\}\ c_1\,\{B\}\ \{A\land \neg b\}\ c_2\,\{B\}} \\
 \overline{\{A\}\ \text{if}\ b\ \text{then}\ c_1\ \text{else}\ c_2\ \text{end}\ \{B\}} \\
 \underline{\models (A\Rightarrow A')\ \{A'\}\ c\,\{B'\}\ \models (B'\Rightarrow B)} \\
 \overline{\{A\}\ c\,\{B\}}
\end{array}$$

A partial correctness property is provable (notation: $\vdash \{A\} \ c \ \{B\}$) if it is derivable by the Hoare rules. In (while), A is called a (loop) invariant.

Outline of Lecture 10

Recap: Axiomatic Semantics of WHILE

Soundness of Hoare Logic

(In-)Completeness of Hoare Logic

Relative Completeness of Hoare Logic

Soundness of Hoare Logic I

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

Soundness of Hoare Logic I

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 10.1 (Substitution lemma)

For every $A \in Assn$, $x \in Var$, $a \in AExp$, $\sigma \in \Sigma$, and $I \in Int$:

$$\sigma \models' A[x \mapsto a] \iff \sigma[x \mapsto \mathfrak{A}[a]\sigma] \models' A.$$

Soundness of Hoare Logic I

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 10.1 (Substitution lemma)

For every $A \in Assn$, $x \in Var$, $a \in AExp$, $\sigma \in \Sigma$, and $I \in Int$:

$$\sigma \models' A[x \mapsto a] \iff \sigma[x \mapsto \mathfrak{A}[a]\sigma] \models' A.$$

Proof.

by induction over $A \in Assn$ (omitted)

Soundness of Hoare Logic II

Theorem 10.2 (Soundness of Hoare Logic)

For every partial correctness property $\{A\}$ c $\{B\}$,

$$\vdash \{A\} c \{B\} \Rightarrow \models \{A\} c \{B\}.$$

Soundness of Hoare Logic II

Theorem 10.2 (Soundness of Hoare Logic)

For every partial correctness property $\{A\}$ c $\{B\}$,

$$\vdash \{A\} c \{B\} \Rightarrow \models \{A\} c \{B\}.$$

Proof.

Let $\vdash \{A\} \ c \ \{B\}$. By induction over the structure of the corresponding proof tree we show that, for every $\sigma \in \Sigma$ and $I \in Int$ such that $\sigma \models^I A$, $\mathfrak{C}[\![c]\!] \sigma \models^I B$ (on the board). (If $\sigma = \bot$, then $\mathfrak{C}[\![c]\!] \sigma = \bot \models^I B$ holds trivially.)

Outline of Lecture 10

Recap: Axiomatic Semantics of WHILE

Soundness of Hoare Logic

(In-)Completeness of Hoare Logic

Relative Completeness of Hoare Logic

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable ✓

Completeness: all valid partial correctness properties are systematically derivable \(\xi \)

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable √

Completeness: all valid partial correctness properties are systematically derivable 4

Theorem 10.3 (Gödel's Incompleteness Theorem)

The set of all valid assertions

$$\{A \in Assn \mid \models A\}$$

is not recursively enumerable, i.e., there exists no proof system for Assn in which all valid assertions are systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]



Kurt Gödel (1906–1978)

Lecture 10: Axiomatic Semantics of WHILE II (Soundness & Completeness)

Incompleteness of Hoare Logic II

Corollary 10.4

There is no proof system in which all valid partial correctness properties can be enumerated.

Incompleteness of Hoare Logic II

Corollary 10.4

There is no proof system in which all valid partial correctness properties can be enumerated.

Proof.

Given $A \in Assn$, $\models A$ is obviously equivalent to $\{true\} \text{ skip } \{A\}$. Thus the enumerability of all valid partial correctness properties would imply the enumerability of all valid assertions.

Incompleteness of Hoare Logic II

Corollary 10.4

There is no proof system in which all valid partial correctness properties can be enumerated.

Proof.

Given $A \in Assn$, $\models A$ is obviously equivalent to $\{true\} \text{ skip } \{A\}$. Thus the enumerability of all valid partial correctness properties would imply the enumerability of all valid assertions.

Remark: alternative proof (using computability theory):

 $\{\text{true}\}\ c\ \{\text{false}\}\$ is valid iff c does not terminate on any input state. But the set of all non-terminating WHILE statements is not enumerable.

Outline of Lecture 10

Recap: Axiomatic Semantics of WHILE

Soundness of Hoare Logic

(In-)Completeness of Hoare Logic

Relative Completeness of Hoare Logic

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

$$\frac{\models (A \Rightarrow A') \quad \{A'\} \ c \ \{B'\} \quad \models (B' \Rightarrow B)}{\{A\} \ c \ \{B\}}$$

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

$$\frac{\models (A \Rightarrow A') \quad \{A'\} \ c \ \{B'\} \quad \models (B' \Rightarrow B)}{\{A\} \ c \ \{B\}}$$

since it is based on the validity of implications within Assn

• The other language constructs are "enumerable"

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

$$\frac{\models (A \Rightarrow A') \quad \{A'\} \ c \ \{B'\} \quad \models (B' \Rightarrow B)}{\{A\} \ c \ \{B\}}$$

- The other language constructs are "enumerable"
- Therefore: separation of proof system (Hoare Logic) and assertion language (Assn)

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

$$\frac{\models (A \Rightarrow A') \quad \{A'\} \ c \ \{B'\} \quad \models (B' \Rightarrow B)}{\{A\} \ c \ \{B\}}$$

- The other language constructs are "enumerable"
- Therefore: separation of proof system (Hoare Logic) and assertion language (Assn)
- One can show: if an "oracle" is available which decides whether a given assertion is valid, then all valid partial correctness properties can be systematically derived

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

$$\frac{\models (A \Rightarrow A') \quad \{A'\} \ c \ \{B'\} \quad \models (B' \Rightarrow B)}{\{A\} \ c \ \{B\}}$$

- The other language constructs are "enumerable"
- Therefore: separation of proof system (Hoare Logic) and assertion language (Assn)
- One can show: if an "oracle" is available which decides whether a given assertion is valid, then all valid partial correctness properties can be systematically derived
- ⇒ Relative completeness

Relative Completeness of Hoare Logic II

Theorem 10.5 (Cook's Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness property $\{A\}$ c $\{B\}$:

$$\models \{A\} c \{B\} \Rightarrow \vdash \{A\} c \{B\}.$$

Stephen A. Cook (* 1939)

Thus: if we know that a partial correctness property is valid, then we know that there is a corresponding derivation.

Relative Completeness of Hoare Logic II

Theorem 10.5 (Cook's Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness property $\{A\}$ c $\{B\}$:

$$\models \{A\} c \{B\} \Rightarrow \vdash \{A\} c \{B\}.$$

Stephen A. Cook (* 1939)

Thus: if we know that a partial correctness property is valid, then we know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., $\{A\}$ c_1 ; c_2 $\{B\}$ has to be derived. This requires an intermediate assertion $C \in Assn$ such that $\{A\}$ c_1 $\{C\}$ and $\{C\}$ c_2 $\{B\}$. How to find it?

Weakest Preconditions I

Definition 10.6 (Weakest precondition)

Given $c \in Cmd$, $B \in Assn$ and $I \in Int$, the weakest precondition of B with respect to c under I is defined by:

$$\textit{wp}'[\![c,B]\!] := \{\sigma \in \Sigma_{\perp} \mid \mathfrak{C}[\![c]\!] \sigma \models^{\prime} B\}.$$

Weakest Preconditions I

Definition 10.6 (Weakest precondition)

Given $c \in Cmd$, $B \in Assn$ and $I \in Int$, the weakest precondition of B with respect to c under I is defined by:

$$\textit{wp}'[c, B] := \{ \sigma \in \Sigma_{\perp} \mid \mathfrak{C}[c] \sigma \models' B \}.$$

Corollary 10.7

For every $c \in Cmd$, $A, B \in Assn$, and $I \in Int$:

- $1. \models^{l} \{A\} c \{B\} \iff A^{l} \subseteq wp^{l} \llbracket c, B \rrbracket$
- 2. If $A_0 \in Assn$ such that $A_0^I = wp^I \llbracket c, B \rrbracket$ for every $I \in Int$, then

$$\models \{A\} \ c \{B\} \quad \iff \quad \models (A \Rightarrow A_0)$$

Weakest Preconditions I

Definition 10.6 (Weakest precondition)

Given $c \in Cmd$, $B \in Assn$ and $I \in Int$, the weakest precondition of B with respect to c under I is defined by:

$$\textit{wp}'[\![c,B]\!] := \{\sigma \in \Sigma_{\perp} \mid \mathfrak{C}[\![c]\!] \sigma \models^{\prime} B\}.$$

Corollary 10.7

For every $c \in Cmd$, $A, B \in Assn$, and $I \in Int$:

- $1. \models^{l} \{A\} \ c \{B\} \iff A^{l} \subseteq wp^{l} \llbracket c, B \rrbracket$
- 2. If $A_0 \in Assn$ such that $A_0^I = wp^I \llbracket c, B \rrbracket$ for every $I \in Int$, then

$$\models \{A\} c \{B\} \iff \models (A \Rightarrow A_0)$$

Remark: (2) justifies the notion of weakest precondition: it is implied by every precondition A which makes $\{A\}$ c $\{B\}$ valid

Weakest Preconditions II

Definition 10.8 (Expressivity of assertion languages)

An assertion language *Assn* is called expressive if, for every $c \in Cmd$ and $B \in Assn$, there exists $A_{c,B} \in Assn$ such that $A_{c,B}^{I} = wp^{I}[\![c,B]\!]$ for every $I \in Int$.

Weakest Preconditions II

Definition 10.8 (Expressivity of assertion languages)

An assertion language *Assn* is called expressive if, for every $c \in Cmd$ and $B \in Assn$, there exists $A_{c,B} \in Assn$ such that $A_{c,B}^{I} = wp^{I}[\![c,B]\!]$ for every $I \in Int$.

Theorem 10.9 (Expressivity of *Assn*)

Assn is expressive.

Weakest Preconditions II

Definition 10.8 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every $c \in Cmd$ and $B \in Assn$, there exists $A_{c,B} \in Assn$ such that $A_{c,B}^{I} = wp^{I}[\![c,B]\!]$ for every $I \in Int$.

Theorem 10.9 (Expressivity of *Assn*)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])

Given $c \in Cmd$ and $B \in Assn$, construct $A_{c,B} \in Assn$ with

$$\sigma \models^{\prime} A_{c,B} \iff \mathfrak{C}[\![c]\!] \sigma \models^{\prime} B$$
 (for every $\sigma \in \Sigma_{\perp}$, $I \in Int$). For example:

$$A_{\text{skip},B} := B$$
 $A_{x:=a,B} := B[x \mapsto a]$ $A_{c_1;c_2,B} := A_{c_1,A_{c_2,B}}$...

(for while: "Gödelization" of sequences of intermediate states)

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are "derivable":

Lemma 10.10

For every $c \in Cmd$ and $B \in Assn: \vdash \{A_{c,B}\} \ c \{B\}$

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are "derivable":

Lemma 10.10

For every $c \in Cmd$ and $B \in Assn: \vdash \{A_{c,B}\} \ c \{B\}$

Proof.

by structural induction over *c* (omitted)

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are "derivable":

Lemma 10.10

For every $c \in Cmd$ and $B \in Assn: \vdash \{A_{c,B}\} \ c \{B\}$

Proof.

by structural induction over *c* (omitted)

Proof (Cook's Completeness Theorem 10.5).

We have to show that Hoare Logic is relatively complete, i.e., that

$$\models \{A\} c \{B\} \Rightarrow \vdash \{A\} c \{B\}.$$

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are "derivable":

Lemma 10.10

For every $c \in Cmd$ and $B \in Assn: \vdash \{A_{c,B}\} \ c \{B\}$

Proof.

by structural induction over *c* (omitted)

Proof (Cook's Completeness Theorem 10.5).

We have to show that Hoare Logic is relatively complete, i.e., that

$$\models \{A\} c \{B\} \quad \Rightarrow \quad \vdash \{A\} c \{B\}.$$

• Lemma 10.10: ⊢ {*A*_{*c*,*B*}} *c* {*B*}

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are "derivable":

Lemma 10.10

For every $c \in Cmd$ and $B \in Assn: \vdash \{A_{c,B}\} \ c \{B\}$

Proof.

by structural induction over *c* (omitted)

Proof (Cook's Completeness Theorem 10.5).

We have to show that Hoare Logic is relatively complete, i.e., that

$$\models \{A\} c \{B\} \quad \Rightarrow \quad \vdash \{A\} c \{B\}.$$

- Lemma 10.10: $\vdash \{A_{c,B}\} \ c \{B\}$
- Corollary 10.7: $\models \{A\} \ c \{B\} \Rightarrow \models (A \Rightarrow A_{c,B})$

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are "derivable":

Lemma 10.10

For every $c \in Cmd$ and $B \in Assn: \vdash \{A_{c,B}\} \ c \{B\}$

Proof.

by structural induction over *c* (omitted)

Proof (Cook's Completeness Theorem 10.5).

We have to show that Hoare Logic is relatively complete, i.e., that

$$\models \{A\} c \{B\} \quad \Rightarrow \quad \vdash \{A\} c \{B\}.$$

- Lemma 10.10: $\vdash \{A_{c,B}\} \ c \{B\}$
- Corollary 10.7: $\models \{A\} \ c \{B\} \Rightarrow \models (A \Rightarrow A_{c,B})$ $\models (A \Rightarrow A_{c,B}) \ \{A_{c,B}\} \ c \{B\} \models (B \Rightarrow B)$
 - $\{A\} c \{B\}$

