
Semantics and Verification of Software
Summer Semester 2015

Lecture 1: Introduction

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Preliminaries

Outline of Lecture 1

Preliminaries

Introduction

The Imperative Model Language WHILE

2 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Preliminaries

Staff
• Lectures: Thomas Noll

– Lehrstuhl für Informatik 2, Room 4211
– E-mail noll@cs.rwth-aachen.de

• Exercise classes:
– Christoph Matheja (matheja@cs.rwth-aachen.de)
– Federico Olmedo (federico.olmedo@cs.rwth-aachen.de)

• Student assistants:
– Frederick Prinz

3 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

noll@cs.rwth-aachen.de
matheja@cs.rwth-aachen.de
federico.olmedo@cs.rwth-aachen.de

Preliminaries

Target Audience

• MSc Informatik:
– Theoretische Informatik

• MSc Software Systems Engineering:
– Theoretical Foundations of SSE

• In general:
– interest in formal models for programming languages
– application of mathematical reasoning methods

• Expected: basic knowledge in
– essential concepts of imperative programming languages
– formal languages and automata theory
– mathematical logic

4 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Preliminaries

Target Audience

• MSc Informatik:
– Theoretische Informatik

• MSc Software Systems Engineering:
– Theoretical Foundations of SSE

• In general:
– interest in formal models for programming languages
– application of mathematical reasoning methods

• Expected: basic knowledge in
– essential concepts of imperative programming languages
– formal languages and automata theory
– mathematical logic

4 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Preliminaries

Organisation

• Schedule:
– Lecture Tue 14:15–15:45 AH 2 (starting 14 April)
– Lecture Thu 11:15–12:45 AH 2 (starting 9 April)
– Exercise class Wed 15:00–16:30 AH 6 (starting 22 April)

• Irregular lecture dates – checkout web page!

• Introductory exercise on 22 April
• 1st assignment sheet: next Wednesday (15 April) on web page

– submission by 22 April
– presentation on 29 April

• Work on assignments in groups of three
• Examination (6 ECTS credits):

– oral or written (depending on number of participants)
– date to be fixed

• Admission requires at least 50% of the points in the exercises
• Written material in English, lecture and exercise classes “on demand”, rest up to you

5 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Preliminaries

Organisation

• Schedule:
– Lecture Tue 14:15–15:45 AH 2 (starting 14 April)
– Lecture Thu 11:15–12:45 AH 2 (starting 9 April)
– Exercise class Wed 15:00–16:30 AH 6 (starting 22 April)

• Irregular lecture dates – checkout web page!
• Introductory exercise on 22 April
• 1st assignment sheet: next Wednesday (15 April) on web page

– submission by 22 April
– presentation on 29 April

• Work on assignments in groups of three

• Examination (6 ECTS credits):
– oral or written (depending on number of participants)
– date to be fixed

• Admission requires at least 50% of the points in the exercises
• Written material in English, lecture and exercise classes “on demand”, rest up to you

5 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Preliminaries

Organisation

• Schedule:
– Lecture Tue 14:15–15:45 AH 2 (starting 14 April)
– Lecture Thu 11:15–12:45 AH 2 (starting 9 April)
– Exercise class Wed 15:00–16:30 AH 6 (starting 22 April)

• Irregular lecture dates – checkout web page!
• Introductory exercise on 22 April
• 1st assignment sheet: next Wednesday (15 April) on web page

– submission by 22 April
– presentation on 29 April

• Work on assignments in groups of three
• Examination (6 ECTS credits):

– oral or written (depending on number of participants)
– date to be fixed

• Admission requires at least 50% of the points in the exercises
• Written material in English, lecture and exercise classes “on demand”, rest up to you

5 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Outline of Lecture 1

Preliminaries

Introduction

The Imperative Model Language WHILE

6 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Aspects of Programming Languages

Syntax: “How does a program look like?”
• hierarchical composition of programs from structural components
⇒ Compiler Construction

Semantics: “What does this program mean?”
• output/behaviour/... in dependence of input/environment/...
⇒ This course

Pragmatics: • length and understandability of programs
• learnability of programming language
• appropriateness for specific applications, ...
⇒ Software Engineering

Historic development:
• Formal syntax since 1960s (scanners, LL/LR parsers);

semantics defined by compiler/interpreter
• Formal semantics since 1970s

(operational/denotational/axiomatic)

7 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Aspects of Programming Languages

Syntax: “How does a program look like?”
• hierarchical composition of programs from structural components
⇒ Compiler Construction

Semantics: “What does this program mean?”
• output/behaviour/... in dependence of input/environment/...
⇒ This course

Pragmatics: • length and understandability of programs
• learnability of programming language
• appropriateness for specific applications, ...
⇒ Software Engineering

Historic development:
• Formal syntax since 1960s (scanners, LL/LR parsers);

semantics defined by compiler/interpreter
• Formal semantics since 1970s

(operational/denotational/axiomatic)

7 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Aspects of Programming Languages

Syntax: “How does a program look like?”
• hierarchical composition of programs from structural components
⇒ Compiler Construction

Semantics: “What does this program mean?”
• output/behaviour/... in dependence of input/environment/...
⇒ This course

Pragmatics: • length and understandability of programs
• learnability of programming language
• appropriateness for specific applications, ...
⇒ Software Engineering

Historic development:
• Formal syntax since 1960s (scanners, LL/LR parsers);

semantics defined by compiler/interpreter
• Formal semantics since 1970s

(operational/denotational/axiomatic)

7 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Aspects of Programming Languages

Syntax: “How does a program look like?”
• hierarchical composition of programs from structural components
⇒ Compiler Construction

Semantics: “What does this program mean?”
• output/behaviour/... in dependence of input/environment/...
⇒ This course

Pragmatics: • length and understandability of programs
• learnability of programming language
• appropriateness for specific applications, ...
⇒ Software Engineering

Historic development:
• Formal syntax since 1960s (scanners, LL/LR parsers);

semantics defined by compiler/interpreter
• Formal semantics since 1970s

(operational/denotational/axiomatic)

7 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Why Semantics?

Idea: compiler = ultimate semantics!
• Compiler gives each individual program a semantics

(= “behaviour” of generated machine code)

But:
• Compilers are highly complicated software systems

– code optimisations
– memory management
– interaction with runtime system
– ...

• Most languages have more than one compiler (with different outputs)
• Most compilers have bugs
⇒ Does not help with formal reasoning about programming language or individual programs

8 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Why Semantics?

Idea: compiler = ultimate semantics!
• Compiler gives each individual program a semantics

(= “behaviour” of generated machine code)

But:
• Compilers are highly complicated software systems

– code optimisations
– memory management
– interaction with runtime system
– ...

• Most languages have more than one compiler (with different outputs)
• Most compilers have bugs
⇒ Does not help with formal reasoning about programming language or individual programs

8 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

The Semantics of “Semantics”

Originally: study of meaning of symbols (linguistics)
Semantics of a program: meaning of a concrete program

• mapping input→ output values
• interaction behaviour (shared variables, communication, ...)
• ...

Semantics of a programming language: mapping of each (syntactically correct)
program of a concrete programming language to its meaning

Semantics of software: various techniques for defining the semantics of diverse
programming languages
• operational
• denotational
• axiomatic
• ...

9 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Motivation for Rigorous Formal Treatment I

Example 1.1

1. How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

2. What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict boolean operations
Modula: non-strict boolean operations X

10 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Motivation for Rigorous Formal Treatment I

Example 1.1

1. How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

2. What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict boolean operations
Modula: non-strict boolean operations X

10 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Motivation for Rigorous Formal Treatment II

• Support for development of
– new programming languages: missing details, ambiguities and inconsistencies can be recognized
– compilers: automatic compiler generation from appropriately defined semantics
– programs: exact understanding of semantics avoids uncertainties in the implementation of

algorithms

• Support for correctness proofs of
– programs: comparison of program semantics with desired behavior

(e.g., termination properties, absence of deadlocks, ...)

– compilers: programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

– optimizing transformations: code
optimization−→ code

semantics ↓ ↓ semantics

meaning
?
= meaning

11 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Motivation for Rigorous Formal Treatment II

• Support for development of
– new programming languages: missing details, ambiguities and inconsistencies can be recognized
– compilers: automatic compiler generation from appropriately defined semantics
– programs: exact understanding of semantics avoids uncertainties in the implementation of

algorithms
• Support for correctness proofs of

– programs: comparison of program semantics with desired behavior
(e.g., termination properties, absence of deadlocks, ...)

– compilers: programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

– optimizing transformations: code
optimization−→ code

semantics ↓ ↓ semantics

meaning
?
= meaning

11 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

(Complementary) Kinds of Formal Semantics

Operational semantics: describes computation of the program on some (very)
abstract machine (G. Plotkin)

• example: (seq)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1;c2, σ〉 → σ′′

• application: implementation of programming languages (compilers, interpreters, ...)

Denotational semantics: mathematical definition of input/output relation of the
program by induction on its syntactic structure (D. Scott, C. Strachey)
• example: CJ.K : Cmd → (Σ 99K Σ)

CJc1;c2K := CJc2K ◦ CJc1K
• application: program analysis

Axiomatic semantics: formalization of special properties of programs by logical
formulae (assertions/proof rules; R. Floyd, T. Hoare)

• example: (seq)

{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

• application: program verification

12 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

(Complementary) Kinds of Formal Semantics

Operational semantics: describes computation of the program on some (very)
abstract machine (G. Plotkin)

• example: (seq)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1;c2, σ〉 → σ′′

• application: implementation of programming languages (compilers, interpreters, ...)
Denotational semantics: mathematical definition of input/output relation of the

program by induction on its syntactic structure (D. Scott, C. Strachey)
• example: CJ.K : Cmd → (Σ 99K Σ)

CJc1;c2K := CJc2K ◦ CJc1K
• application: program analysis

Axiomatic semantics: formalization of special properties of programs by logical
formulae (assertions/proof rules; R. Floyd, T. Hoare)

• example: (seq)

{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

• application: program verification

12 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

(Complementary) Kinds of Formal Semantics

Operational semantics: describes computation of the program on some (very)
abstract machine (G. Plotkin)

• example: (seq)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1;c2, σ〉 → σ′′

• application: implementation of programming languages (compilers, interpreters, ...)
Denotational semantics: mathematical definition of input/output relation of the

program by induction on its syntactic structure (D. Scott, C. Strachey)
• example: CJ.K : Cmd → (Σ 99K Σ)

CJc1;c2K := CJc2K ◦ CJc1K
• application: program analysis

Axiomatic semantics: formalization of special properties of programs by logical
formulae (assertions/proof rules; R. Floyd, T. Hoare)

• example: (seq)

{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

• application: program verification

12 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Overview of the Course

1. The imperative model language WHILE
2. Operational semantics of WHILE
3. Denotational semantics of WHILE
4. Equivalence of operational and denotational semantics
5. Axiomatic semantics of WHILE
6. Extensions: procedures and dynamic data structures
7. Applications: compiler correctness etc.

13 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

Introduction

Literature

(also see the collection [“Handapparat”] at the CS Library)
• Formal semantics

– G. Winskel: The Formal Semantics of Programming Languages, The MIT Press, 1996
• Compiler correctness

– H.R. Nielson, F. Nielson: Semantics with Applications: An Appetizer , Springer Undergraduate Topics
in Computer Science, 2007

14 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

The Imperative Model Language WHILE

Outline of Lecture 1

Preliminaries

Introduction

The Imperative Model Language WHILE

15 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

The Imperative Model Language WHILE

Syntactic Categories

WHILE: simple imperative programming language without procedures or advanced
data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {true, false} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) c

16 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

The Imperative Model Language WHILE

Syntactic Categories

WHILE: simple imperative programming language without procedures or advanced
data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {true, false} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) c

16 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

The Imperative Model Language WHILE

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free grammar:
a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end ∈ Cmd

Remarks: we assume that
• the syntax of numbers, truth values and variables is predefined

(i.e., no “lexical analysis”)
• the syntactic interpretation of ambiguous constructs (expressions) is uniquely determined

(by brackets or priorities)

17 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

The Imperative Model Language WHILE

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free grammar:
a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end ∈ Cmd

Remarks: we assume that
• the syntax of numbers, truth values and variables is predefined

(i.e., no “lexical analysis”)
• the syntactic interpretation of ambiguous constructs (expressions) is uniquely determined

(by brackets or priorities)

17 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

The Imperative Model Language WHILE

A WHILE Program

and Its Flow Diagram

Example 1.3

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

end
end

Effect: z := x * y = 42

18 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

The Imperative Model Language WHILE

A WHILE Program and Its Flow Diagram

Example 1.3

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

end
end

Effect: z := x * y = 42

18 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

The Imperative Model Language WHILE

A WHILE Program and Its Flow Diagram

Example 1.3

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

end
end

Effect: z := x * y = 42

18 of 18 Semantics and Verification of Software
Summer Semester 2015
Lecture 1: Introduction

	Preliminaries
	Introduction
	The Imperative Model Language WHILE

