
Semantics and Verification of Software (SS15)
apl. Prof. Dr. Thomas Noll
Dr. Federico Olmedo Christoph Matheja

Exercise Sheet 10: Correctness Properties for Execution Time
Due date: July 8th. You can hand in your solutions at the start of the exercise class.

Exercise 1 (Timed correctness in non-deterministic programs) 10%
Extend the proof system of Hoare logic for timed correctness to incorporate a demonic
model of the non-deterministic operator c1� c2. (In the demonic model, all possible
program executions must establish the postcondition and satisfy the time bound).

Exercise 2 (Alternative while Rule) 20%
Suggest a rule for while (b) do {c} that expresses that its execution time, neglecting con-
stant factors, is the product of the number of times the loop is executed and the maximal
execution time for the body of the loop.

Exercise 3 (Completeness of Hoare logic for timed correctness) 25%
Prove or disprove: There exists a valid total correctness property {A} c {⇓ B} such that
for every e ∈ AExp, the timed correctness property {A} c {e ⇓ B} is not valid.

Exercise 4 (Correctness Properties for Lower Execution Time Bounds) 45%
In the lecture, we considered a calculus to prove upper bounds on the execution time of
programs.
(a) [25%] Modify the Hoare logic for timed correctness from the lecture to prove lower

execution time bounds instead of upper bounds. To be more precise, a lower bound
correctness property {A}c{e ⇑ B} is valid if there exists k > 0 such that for each
I ∈ Int, σ, σ′ ∈ Σ and τ ∈ N, 〈c, σ〉 τ−→ σ′ implies τ ≥ k · AJeK and σ′ |=I B.

(b) [5%] For upper execution time bounds, we considered total correctness properties
only. Why are we considering partial correctness properties instead for lower bound
execution time bounds?

(c) [5%] Is there a postcondition e ⇑ B such that {A}c{e ⇑ B} universally holds re-
gardless of the choice of A and c?

(d) [10%] Using your Hoare calculus for lower execution time bounds, prove that

{true}while (true) do {skip}{2 � N ⇑ true}
is valid for each N ∈ N 1. Note: You may assume � to be a given functional
symbol, i.e. you do not have to define it in Hoare logic first.

1Knuth’s arrow notation is defined recursively as a � 1 := a and a � (b+ 1) := aa�b where a, b ∈ N.

Page 1 of 1


