Exercise Sheet 10: Correctness Properties for Execution Time

Lehrstuhl für Informatik 2

Softwaremodellierung und Verifikation

Due date: July 8th. You can hand in your solutions at the start of the exercise class.

- Exercise 1 (Timed correctness in non-deterministic programs) 10%Extend the proof system of Hoare logic for timed correctness to incorporate a demonic model of the non-deterministic operator $c_1 \square c_2$. (In the demonic model, all possible program executions must establish the postcondition and satisfy the time bound).
- Exercise 2 (Alternative while Rule) Suggest a rule for while (b) do $\{c\}$ that expresses that its execution time, neglecting con-

stant factors, is the product of the number of times the loop is executed and the maximal execution time for the body of the loop.

Exercise 3 (Completeness of Hoare logic for timed correctness)

Prove or disprove: There exists a valid total correctness property $\{A\} c \{ \Downarrow B \}$ such that for every $e \in \mathsf{AExp}$, the timed correctness property $\{A\} \ c \ \{e \Downarrow B\}$ is not valid.

- Exercise 4 (Correctness Properties for Lower Execution Time Bounds) 45%In the lecture, we considered a calculus to prove upper bounds on the execution time of programs.
 - (a) [25%] Modify the Hoare logic for timed correctness from the lecture to prove *lower* execution time bounds instead of upper bounds. To be more precise, a lower bound correctness property $\{A\}c\{e \uparrow B\}$ is valid if there exists k > 0 such that for each $I \in Int, \sigma, \sigma' \in \Sigma \text{ and } \tau \in \mathbb{N}, \langle c, \sigma \rangle \xrightarrow{\tau} \sigma' \text{ implies } \tau \geq k \cdot \mathfrak{A}\llbracket e \rrbracket \text{ and } \sigma' \models^I B.$
 - (b) [5%] For upper execution time bounds, we considered total correctness properties only. Why are we considering partial correctness properties instead for lower bound execution time bounds?
 - (c) [5%] Is there a postcondition $e \uparrow B$ such that $\{A\}c\{e \uparrow B\}$ universally holds regardless of the choice of A and c?
 - (d) [10%] Using your Hoare calculus for lower execution time bounds, prove that

{true}while (true) do {skip}{ $2 \uparrow\uparrow N \uparrow\uparrow$ true}

is valid for each $N \in \mathbb{N}^{1}$. Note: You may assume $\uparrow\uparrow$ to be a given functional symbol, i.e. you do not have to define it in Hoare logic first.

25%

20%

¹Knuth's arrow notation is defined recursively as $a \uparrow\uparrow 1 := a$ and $a \uparrow\uparrow (b+1) := a^{a\uparrow\uparrow b}$ where $a, b \in \mathbb{N}$.