
Semantics and Verification of Software (SS15)
apl. Prof. Dr. Thomas Noll
Dr. Federico Olmedo Christoph Matheja

Exercise Sheet 8: Semantics of Blocks and Procedures
Due date: June 23th. You can hand in your solutions at the start of the exercise class.

Exercise 1 (Understanding Local Scoping) 30%
Assume a variable y has already been declared in the outermost block. Give the value of
variable y in the final state of each of the following programs in case of static as well as
dynamic scoping.

a)[5%] b)[5%] c)[5%] d)[5%] e)[5%]

x := 3;
begin
var x;
x := 2;
begin
var x;
x := 1;
y := x;

end;
end;

x := 3;
begin
var x;
x := 2;
y := x;
begin
var x;
x := 1;
y := x;

end;
end

x := 3;
begin
var x;
x := 2;
y := x;
begin
var x; var y;
x := 1;
y := x;

end;
end

begin
var x;
proc P is y := x end;
begin
var x;
x := 2;
call P ;

end
end

begin
var x;
proc P is x := 1 end;
proc Q is call P end;
begin
var x;
proc P is x := 2 end;
x := 3;
call Q;
y := x;

end
end

Exercise 2 (Blocks with Initialization of Local Variables) 20%
Assume we extend the WHILE programming language with blocks whose local variables
are initialized (procedures are not considered in the extension).

v ::= var x :=e; v | ε (e ranges over AExp)

c ::= . . . | begin v c end
(a) [10%] Modify the definition of the update function updvJ·K : VDec× VEnv × Sto→

VEnv × Sto to account for the variable initialization:

updvJvar x :=e; vK (ρ, σ) = . . .

updvJεK (ρ, σ) = . . .

(b) [10%] Now the execution relation depends only on the variable environment (there is
no procedure environment). For instance, ρ ` 〈c, σ〉 → σ′ reads “in (variable) envi-
ronment ρ, statement c transforms store σ into store σ′”. Complete the (block)–rule
for defining the operational semantics of the language extension.

· · ·
ρ ` 〈begin v c end, σ〉 → σ′′

Exercise 3 (Procedures without Local Variables) 35%
In this exercise we consider a simpler model of procedures, where we asume no local vari-
ables. Procedures will manipulate the “global” program state and a call to a procedure
will simple behave as unfolding its body. For the sake of concreteness we assume there

Page 1 of 2

are only procedures P1 and P2 of body body1 and body2 in Cmd. (We allow the possibility
that these pair of procedures are mutually recursively defined, i.e. that body1 and body2
contain calls to P1 and P2.
The language syntax is extended by the following clause:

c ::= . . . | call P1 | call P2 .

The semantics of the extension in defined in two steps. First we let PInt , (Σ 99K
Σ)× (Σ 99K Σ) be the set of procedure interpretation. We define semantic function

CJK∗ : Cmd→ PInt→ (Σ 99K Σ)

which gives the denotation of a program w.r.t. a procedure interpretation. For any
WHILE program c, CJcK∗(θ1,θ2) is independent of procedure interpretation (θ1, θ2) and
coincides with CJcK. For procedure calls we simple extract its interpretation from the
interpretation environment, i.e. CJcall P1K∗(θ1,θ2) = θ1 and CJcall P2K∗(θ1,θ2) = θ2.
(a) [20%] Determine the interpretation (θ?1, θ

?
2) of procedures P1 and P2 induced by

their bodies body1 and body2.
Hint: Have a look at the semantics of CJbody1K∗(θ?1 ,θ?2) and CJbody2K∗(θ?1 ,θ?2) first.

(b) [15%] Can the computation of θ?1 and θ?2 be simplified if we know that procedures
P1 and P2 are not mutually recursive (but still recursive)?

Exercise 4 (Axiomatic Semantics with Local Variables) 15%

(a) [5%] Let A be an assertion with free variables var(A). Define an assertion A′ in
which every x ∈ var(A) is replaced by a fresh existentially quantified variable x′

such that |= (A⇒ A′) holds.
(b) [10%] Recall the WHILE programming language extended with blocks whose local

variables are initialized as introduced in Exercise 2. Extend the rules of axiomatic
semantics to capture the local variable declarations and block definitions. You
may assume that a sequence v of variable declarations contains no duplicates. For
convenience, you may use var(v) (var(A)) to denote the set of variables occuring in
v (A) and Exp(v) to denote the corresponding arithmetic expressions.

Page 2 of 2

