

Exercise Sheet 5: Denotational Semantics

Due date: May 20th. You can hand in your solutions at the start of the exercise class.

Exercise 1 (Denotational Semantics of a Recursive Function)

Consider the following recursive program for $n \in \mathbb{Z}$:

75%

25%

 $fac(n) := if (n = 0) then \{1\} else \{fac(n - 1) * n\};$

- (a) [5%] Determine the functional $\Phi : (\mathbb{Z} \dashrightarrow \mathbb{Z}) \to (\mathbb{Z} \dashrightarrow \mathbb{Z})$ for fac(n), as in the lecture.
- (b) [20%] Show that Φ is monotonic and continuous.
- (c) [10%] Show that the partial order $(\mathbb{Z} \dashrightarrow \mathbb{Z}, \sqsubseteq)$ is chain complete.
- (d) [20%] Let $\mathfrak{C}[[fac(n)]]$ be defined by $fix(\Phi)$. Compute the denotational semantics of fac(3).
- (e) [20%] Prove that the program fac calculates the factorial, i.e. $fix(\Phi)(n) = n!$ for any $n \in \mathbb{Z}$.

Exercise 2 (Denotational Semantics of Guarded Commands)

Dijkstra's guarded commands are essentially of the form

$$\mathsf{do}\{b_1 \to c_1 \ b_2 \to c_2\}$$

(where $b_1, b_2 \in \mathsf{BExp}$ and $c_1, c_2 \in \mathsf{Cmd}$). They form a natural generalisation of the WHILE loop:

While at least one of the tests is true, the corresponding statement is executed. Here the satisfaction of both tests results in a non-deterministic choice of the command. The computation terminates as soon as neither of the tests is true.

(a) [10%] Which function on the natural numbers is computed by the following statement? Transform it to a *WHILE* statement.

$$do \{ x > y \rightarrow x := x - y \\ y > x \rightarrow y := y - x \\ \}$$

(b) [15%] Let $b_1, b_2 \in \mathsf{BExp}$ be two mutually excluding tests (i.e., in no state both b_1 and b_2 are true) and $c_1, c_2 \in \mathsf{Cmd}$. How can the semantics of

$$do \{ \\ b_1 \rightarrow c_1 \\ b_2 \rightarrow c_2 \\ \}$$

be defined as the least fixpoint of a mapping

$$\Phi: (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma)?$$