

Lehrstuhl für Informatik 2

Softwaremodellierung und Verifikation

Due date: May 12th. You can hand in your solutions at the start of the exercise class.

Exercise 1 (Chain Complete Partial Orders)

Determine whether each of the following statements is true or false. For true statements present a formal proof, and for false statements provide a counterexample.

- (a) [7.5%] Every continuous function $f: (D_1, \sqsubseteq_1) \to (D_1, \sqsubseteq_2)$ between two CCPOs (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) is monotonic.
- (b) [7.5%] Consider the partial order (\mathbb{Q}, \leq) of the rational numbers ordered by the natural order in the reals. (\mathbb{Q}, \leq) is chain complete.
- (c) [7.5%] If $f: (D_1, \sqsubseteq_1) \to (D_1, \sqsubseteq_2)$ is a monotonic function between two CCPOs and $D \subseteq D_1$ is a chain, then $f(\bigsqcup D) \sqsubseteq_2 \bigsqcup f(D)$.
- (d) [7.5%] Let (D, \Box) be a partial order and let $f: (D, \Box) \to (D, \Box)$ be monotonic. If p is the least element in D satisfying $f(p) \sqsubseteq p$, then p is a fixed point of f.

Exercise 2 (repeat-until Loops)

(a) [10%] Define a transformer $F: (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma)$ such that

$$\mathfrak{C}[\operatorname{repeat} c \text{ until } b]] = \operatorname{fix}(F)$$
.

The transformer F is allowed to depend on the semantics only of c and b (i.e. $\mathfrak{B}[b]$ and $\mathfrak{C}[c]$. You cannot rely on the existence of while-loops within the language to define F.

(b) [5%] Use the definition provided in (a) to compute the transformer $\hat{F}: (\Sigma \dashrightarrow \Sigma) \rightarrow \Sigma$ $(\Sigma \rightarrow \Sigma)$ whose least fixed point gives the semantics of program repeat skip until false. In other words, compute \hat{F} such that

 \mathfrak{C} [repeat skip until false] = fix(\hat{F}).

(c) [10%] Show that $\operatorname{fix}(\hat{F}) = f_{\emptyset}$.

Exercise 3 (Closed Sets)

A set $C \subseteq D$ is *closed* if and only if for each chain $G \subseteq C$, $||G \in C$. In the following, let (D, \sqsubseteq) be a chain complete partial order and $f: D \to D$ be a continuous function. Prove the following two statements.

- (a) [7.5%] For each closed set $C \subseteq D$ with $f(x) \in C$ for each $x \in C$, we have fix $(f) \in C$.
- (b) [7.5%] $f(x) \sqsubseteq x$ implies fix $(f) \sqsubseteq x, x \in D$.

Exercise 4 (Pointwise Ordering)

Let (D, \sqsubseteq) be a CCPO and define $(D \to D, \sqsubseteq')$ by setting

$$f_1 \sqsubseteq' f_2$$
 if and only if $f_1(d) \sqsubseteq f_2(d)$ for all $d \in D$

(a) [10%] Show that $(D \to D, \Box')$ is a CCPO.

30%

25%

15%

(b) [20%] Show that fixpoints of chains are "continous", i.e.

$$\mathsf{fix}(\bigsqcup' \mathcal{F}) = \bigsqcup\{\mathsf{fix}(f) \mid f \in \mathcal{F}\}\$$

holds for all non-empty chains $\mathcal{F}\subseteq D\to D$ of continous functions.